File size: 6,384 Bytes
ec3b96a
1f2f15c
 
166b6db
2509eb1
 
b355b1a
547b516
706b887
dc637a5
1f2f15c
72b8226
 
dc637a5
 
72b8226
 
dc637a5
 
72b8226
 
 
706b887
 
d1c2665
 
 
 
1f2f15c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72b8226
1f2f15c
 
 
72b8226
1f2f15c
b355b1a
c8136d1
e4b31e4
1f2f15c
b355b1a
46c5b00
 
97e7693
 
706b887
97e7693
 
dc637a5
 
 
 
 
 
 
 
93780aa
 
 
 
 
 
3566189
 
b879202
1f2f15c
 
77e039c
ec3b96a
 
89275cd
 
 
 
e0d6ec0
ec3b96a
e4b31e4
 
46c5b00
d1c2665
 
 
 
 
 
 
 
 
 
b879202
 
 
 
 
 
 
 
1f2f15c
e4b31e4
b879202
1f2f15c
b879202
 
 
 
 
1f2f15c
46c5b00
1f2f15c
 
ec3b96a
fc9b498
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import math
#import spaces 
import torch 
from PIL import Image
import gc

if torch.backends.mps.is_available():
    DEVICE = "mps"
    torch.mps.empty_cache()
    gc.collect()
elif torch.cuda.is_available():
    DEVICE = "cuda"
    torch.cuda.empty_cache()
    gc.collect()
else:
    DEVICE = "cpu"

print(f"DEVICE={DEVICE}")

#edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
#normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
edit_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl_edit.safetensors")
normal_file = hf_hub_download(repo_id="cocktailpeanut/c", filename="cosxl.safetensors")

def set_timesteps_patched(self, num_inference_steps: int, device = None):
    self.num_inference_steps = num_inference_steps
    
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    
    sigmas = (sigmas).to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication

EDMEulerScheduler.set_timesteps = set_timesteps_patched

pipe_edit = CosStableDiffusionXLInstructPix2PixPipeline.from_single_file(
    edit_file, num_in_channels=8
)
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to(DEVICE)

pipe_normal = StableDiffusionXLPipeline.from_single_file(normal_file, torch_dtype=torch.float16)
pipe_normal.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_normal.to(DEVICE)

#@spaces.GPU
def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
    return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0]

#@spaces.GPU
def run_edit(image, prompt, resolution, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)):
    #resolution = 1024
    print(f"width={image.width}, height={image.height}")
    image.thumbnail((resolution, resolution), Image.Resampling.LANCZOS)
    #image.resize((resolution, resolution))
    #return pipe_edit(prompt=prompt,image=image,height=resolution,width=resolution,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
    print(f"width={image.width}, height={image.height}")
    img = pipe_edit(prompt=prompt,image=image,height=image.height,width=image.width,negative_prompt=negative_prompt, guidance_scale=guidance_scale,num_inference_steps=20).images[0]
    if DEVICE == "cuda":
        torch.cuda.empty_cache()
        gc.collect()
    elif DEVICE == "mps":
        torch.mps.empty_cache()
        gc.collect()
    return img
css = '''
.gradio-container{
max-width: 768px !important;
margin: 0 auto;
}
'''
normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"]
edit_examples = [["mountain.png", "make it a cloudy day"], ["painting.png", "make the earring fancier"]]
with gr.Blocks(css=css) as demo:
    gr.Markdown('''# CosXL demo
    Unofficial demo for CosXL, a SDXL model tuned to produce full color range images. CosXL Edit allows you to perform edits on images. Both have a [non-commercial community license](https://huggingface.co/stabilityai/cosxl/blob/main/LICENSE)
    ''')
    with gr.Tab("CosXL Edit"):
      with gr.Group():
          image_edit = gr.Image(label="Image you would like to edit", type="pil")
          prompt_edit = gr.Textbox(label="Prompt", scale=4, placeholder="Edit instructions, e.g.: Make the day cloudy")
          size_edit = gr.Number(label="Size", value=1024, maximum=1024, minimum=512, precision=0)
          button_edit = gr.Button("Generate", min_width=120)
          output_edit = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            negative_prompt_edit = gr.Textbox(label="Negative Prompt")
            guidance_scale_edit = gr.Number(label="Guidance Scale", value=7)
      gr.Examples(examples=edit_examples, fn=run_edit, inputs=[image_edit, prompt_edit, size_edit], outputs=[output_edit], cache_examples=False)
    with gr.Tab("CosXL"):
      with gr.Group():
          with gr.Row():
            prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog")
            button_normal = gr.Button("Generate", min_width=120)
          output_normal = gr.Image(label="Your result image", interactive=False)
          with gr.Accordion("Advanced Settings", open=False):
            negative_prompt_normal = gr.Textbox(label="Negative Prompt")
            guidance_scale_normal = gr.Number(label="Guidance Scale", value=7)
      gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=False) 
    button_edit.click(
        
    )
    gr.on(
        triggers=[
            button_normal.click,
            prompt_normal.submit
        ],
        fn=run_normal,
        inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal],
        outputs=[output_normal],
    )
    gr.on(
        triggers=[
            button_edit.click,
            prompt_edit.submit
        ],
        fn=run_edit,
        inputs=[image_edit, prompt_edit, size_edit, negative_prompt_edit, guidance_scale_edit],
        outputs=[output_edit]
    )
if __name__ == "__main__":
    #demo.launch(share=True)
    demo.launch()