Spaces:
Running
Running
File size: 41,693 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
from collections import defaultdict
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from modules.wenet_extractor.transformer.ctc import CTC
from modules.wenet_extractor.transformer.decoder import TransformerDecoder
from modules.wenet_extractor.transformer.encoder import TransformerEncoder
from modules.wenet_extractor.transformer.label_smoothing_loss import LabelSmoothingLoss
from modules.wenet_extractor.utils.common import (
IGNORE_ID,
add_sos_eos,
log_add,
remove_duplicates_and_blank,
th_accuracy,
reverse_pad_list,
)
from modules.wenet_extractor.utils.mask import (
make_pad_mask,
mask_finished_preds,
mask_finished_scores,
subsequent_mask,
)
class ASRModel(torch.nn.Module):
"""CTC-attention hybrid Encoder-Decoder model"""
def __init__(
self,
vocab_size: int,
encoder: TransformerEncoder,
decoder: TransformerDecoder,
ctc: CTC,
ctc_weight: float = 0.5,
ignore_id: int = IGNORE_ID,
reverse_weight: float = 0.0,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
lfmmi_dir: str = "",
):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
super().__init__()
# note that eos is the same as sos (equivalent ID)
self.sos = vocab_size - 1
self.eos = vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.reverse_weight = reverse_weight
self.encoder = encoder
self.decoder = decoder
self.ctc = ctc
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
self.lfmmi_dir = lfmmi_dir
if self.lfmmi_dir != "":
self.load_lfmmi_resource()
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, Optional[torch.Tensor]]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
# 1. Encoder
encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
# 2a. Attention-decoder branch
if self.ctc_weight != 1.0:
loss_att, acc_att = self._calc_att_loss(
encoder_out, encoder_mask, text, text_lengths
)
else:
loss_att = None
# 2b. CTC branch or LF-MMI loss
if self.ctc_weight != 0.0:
if self.lfmmi_dir != "":
loss_ctc = self._calc_lfmmi_loss(encoder_out, encoder_mask, text)
else:
loss_ctc = self.ctc(encoder_out, encoder_out_lens, text, text_lengths)
else:
loss_ctc = None
if loss_ctc is None:
loss = loss_att
elif loss_att is None:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
return {"loss": loss, "loss_att": loss_att, "loss_ctc": loss_ctc}
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_mask: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
) -> Tuple[torch.Tensor, float]:
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# reverse the seq, used for right to left decoder
r_ys_pad = reverse_pad_list(ys_pad, ys_pad_lens, float(self.ignore_id))
r_ys_in_pad, r_ys_out_pad = add_sos_eos(
r_ys_pad, self.sos, self.eos, self.ignore_id
)
# 1. Forward decoder
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out,
encoder_mask,
ys_in_pad,
ys_in_lens,
r_ys_in_pad,
self.reverse_weight,
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
r_loss_att = torch.tensor(0.0)
if self.reverse_weight > 0.0:
r_loss_att = self.criterion_att(r_decoder_out, r_ys_out_pad)
loss_att = (
loss_att * (1 - self.reverse_weight) + r_loss_att * self.reverse_weight
)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
return loss_att, acc_att
def _forward_encoder(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Let's assume B = batch_size
# 1. Encoder
if simulate_streaming and decoding_chunk_size > 0:
encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk(
speech,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks,
) # (B, maxlen, encoder_dim)
else:
encoder_out, encoder_mask = self.encoder(
speech,
speech_lengths,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks,
) # (B, maxlen, encoder_dim)
return encoder_out, encoder_mask
def encoder_extractor(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
# assert speech.shape[0] == speech_lengths[0]
assert decoding_chunk_size != 0
batch_size = speech.shape[0]
encoder_out, encoder_mask = self._forward_encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
) # (B, maxlen, encoder_dim)
return encoder_out
def recognize(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
beam_size: int = 10,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
) -> torch.Tensor:
"""Apply beam search on attention decoder
Args:
speech (torch.Tensor): (batch, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
torch.Tensor: decoding result, (batch, max_result_len)
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
device = speech.device
batch_size = speech.shape[0]
# Let's assume B = batch_size and N = beam_size
# 1. Encoder
encoder_out, encoder_mask = self._forward_encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
) # (B, maxlen, encoder_dim)
maxlen = encoder_out.size(1)
encoder_dim = encoder_out.size(2)
running_size = batch_size * beam_size
encoder_out = (
encoder_out.unsqueeze(1)
.repeat(1, beam_size, 1, 1)
.view(running_size, maxlen, encoder_dim)
) # (B*N, maxlen, encoder_dim)
encoder_mask = (
encoder_mask.unsqueeze(1)
.repeat(1, beam_size, 1, 1)
.view(running_size, 1, maxlen)
) # (B*N, 1, max_len)
hyps = torch.ones([running_size, 1], dtype=torch.long, device=device).fill_(
self.sos
) # (B*N, 1)
scores = torch.tensor(
[0.0] + [-float("inf")] * (beam_size - 1), dtype=torch.float
)
scores = (
scores.to(device).repeat([batch_size]).unsqueeze(1).to(device)
) # (B*N, 1)
end_flag = torch.zeros_like(scores, dtype=torch.bool, device=device)
cache: Optional[List[torch.Tensor]] = None
# 2. Decoder forward step by step
for i in range(1, maxlen + 1):
# Stop if all batch and all beam produce eos
if end_flag.sum() == running_size:
break
# 2.1 Forward decoder step
hyps_mask = (
subsequent_mask(i).unsqueeze(0).repeat(running_size, 1, 1).to(device)
) # (B*N, i, i)
# logp: (B*N, vocab)
logp, cache = self.decoder.forward_one_step(
encoder_out, encoder_mask, hyps, hyps_mask, cache
)
# 2.2 First beam prune: select topk best prob at current time
top_k_logp, top_k_index = logp.topk(beam_size) # (B*N, N)
top_k_logp = mask_finished_scores(top_k_logp, end_flag)
top_k_index = mask_finished_preds(top_k_index, end_flag, self.eos)
# 2.3 Second beam prune: select topk score with history
scores = scores + top_k_logp # (B*N, N), broadcast add
scores = scores.view(batch_size, beam_size * beam_size) # (B, N*N)
scores, offset_k_index = scores.topk(k=beam_size) # (B, N)
# Update cache to be consistent with new topk scores / hyps
cache_index = (offset_k_index // beam_size).view(-1) # (B*N)
base_cache_index = (
torch.arange(batch_size, device=device)
.view(-1, 1)
.repeat([1, beam_size])
* beam_size
).view(
-1
) # (B*N)
cache_index = base_cache_index + cache_index
cache = [torch.index_select(c, dim=0, index=cache_index) for c in cache]
scores = scores.view(-1, 1) # (B*N, 1)
# 2.4. Compute base index in top_k_index,
# regard top_k_index as (B*N*N),regard offset_k_index as (B*N),
# then find offset_k_index in top_k_index
base_k_index = (
torch.arange(batch_size, device=device)
.view(-1, 1)
.repeat([1, beam_size])
) # (B, N)
base_k_index = base_k_index * beam_size * beam_size
best_k_index = base_k_index.view(-1) + offset_k_index.view(-1) # (B*N)
# 2.5 Update best hyps
best_k_pred = torch.index_select(
top_k_index.view(-1), dim=-1, index=best_k_index
) # (B*N)
best_hyps_index = best_k_index // beam_size
last_best_k_hyps = torch.index_select(
hyps, dim=0, index=best_hyps_index
) # (B*N, i)
hyps = torch.cat(
(last_best_k_hyps, best_k_pred.view(-1, 1)), dim=1
) # (B*N, i+1)
# 2.6 Update end flag
end_flag = torch.eq(hyps[:, -1], self.eos).view(-1, 1)
# 3. Select best of best
scores = scores.view(batch_size, beam_size)
# TODO: length normalization
best_scores, best_index = scores.max(dim=-1)
best_hyps_index = (
best_index
+ torch.arange(batch_size, dtype=torch.long, device=device) * beam_size
)
best_hyps = torch.index_select(hyps, dim=0, index=best_hyps_index)
best_hyps = best_hyps[:, 1:]
return best_hyps, best_scores
def ctc_greedy_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
) -> List[List[int]]:
"""Apply CTC greedy search
Args:
speech (torch.Tensor): (batch, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[List[int]]: best path result
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
batch_size = speech.shape[0]
# Let's assume B = batch_size
encoder_out, encoder_mask = self._forward_encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
) # (B, maxlen, encoder_dim)
maxlen = encoder_out.size(1)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
ctc_probs = self.ctc.log_softmax(encoder_out) # (B, maxlen, vocab_size)
topk_prob, topk_index = ctc_probs.topk(1, dim=2) # (B, maxlen, 1)
topk_index = topk_index.view(batch_size, maxlen) # (B, maxlen)
mask = make_pad_mask(encoder_out_lens, maxlen) # (B, maxlen)
topk_index = topk_index.masked_fill_(mask, self.eos) # (B, maxlen)
hyps = [hyp.tolist() for hyp in topk_index]
scores = topk_prob.max(1)
hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
return hyps, scores
def _ctc_prefix_beam_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
beam_size: int,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
) -> Tuple[List[List[int]], torch.Tensor]:
"""CTC prefix beam search inner implementation
Args:
speech (torch.Tensor): (batch, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[List[int]]: nbest results
torch.Tensor: encoder output, (1, max_len, encoder_dim),
it will be used for rescoring in attention rescoring mode
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
batch_size = speech.shape[0]
# For CTC prefix beam search, we only support batch_size=1
assert batch_size == 1
# Let's assume B = batch_size and N = beam_size
# 1. Encoder forward and get CTC score
encoder_out, encoder_mask = self._forward_encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
) # (B, maxlen, encoder_dim)
maxlen = encoder_out.size(1)
ctc_probs = self.ctc.log_softmax(encoder_out) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
cur_hyps = [(tuple(), (0.0, -float("inf")))]
# 2. CTC beam search step by step
for t in range(0, maxlen):
logp = ctc_probs[t] # (vocab_size,)
# key: prefix, value (pb, pnb), default value(-inf, -inf)
next_hyps = defaultdict(lambda: (-float("inf"), -float("inf")))
# 2.1 First beam prune: select topk best
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
for s in top_k_index:
s = s.item()
ps = logp[s].item()
for prefix, (pb, pnb) in cur_hyps:
last = prefix[-1] if len(prefix) > 0 else None
if s == 0: # blank
n_pb, n_pnb = next_hyps[prefix]
n_pb = log_add([n_pb, pb + ps, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
elif s == last:
# Update *ss -> *s;
n_pb, n_pnb = next_hyps[prefix]
n_pnb = log_add([n_pnb, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
# Update *s-s -> *ss, - is for blank
n_prefix = prefix + (s,)
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
else:
n_prefix = prefix + (s,)
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
# 2.2 Second beam prune
next_hyps = sorted(
next_hyps.items(), key=lambda x: log_add(list(x[1])), reverse=True
)
cur_hyps = next_hyps[:beam_size]
hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps]
return hyps, encoder_out
def ctc_prefix_beam_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
beam_size: int,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
) -> List[int]:
"""Apply CTC prefix beam search
Args:
speech (torch.Tensor): (batch, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[int]: CTC prefix beam search nbest results
"""
hyps, _ = self._ctc_prefix_beam_search(
speech,
speech_lengths,
beam_size,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
)
return hyps[0]
def attention_rescoring(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
beam_size: int,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
ctc_weight: float = 0.0,
simulate_streaming: bool = False,
reverse_weight: float = 0.0,
) -> List[int]:
"""Apply attention rescoring decoding, CTC prefix beam search
is applied first to get nbest, then we resoring the nbest on
attention decoder with corresponding encoder out
Args:
speech (torch.Tensor): (batch, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
reverse_weight (float): right to left decoder weight
ctc_weight (float): ctc score weight
Returns:
List[int]: Attention rescoring result
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
if reverse_weight > 0.0:
# decoder should be a bitransformer decoder if reverse_weight > 0.0
assert hasattr(self.decoder, "right_decoder")
device = speech.device
batch_size = speech.shape[0]
# For attention rescoring we only support batch_size=1
assert batch_size == 1
# encoder_out: (1, maxlen, encoder_dim), len(hyps) = beam_size
hyps, encoder_out = self._ctc_prefix_beam_search(
speech,
speech_lengths,
beam_size,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
)
assert len(hyps) == beam_size
hyps_pad = pad_sequence(
[torch.tensor(hyp[0], device=device, dtype=torch.long) for hyp in hyps],
True,
self.ignore_id,
) # (beam_size, max_hyps_len)
ori_hyps_pad = hyps_pad
hyps_lens = torch.tensor(
[len(hyp[0]) for hyp in hyps], device=device, dtype=torch.long
) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out = encoder_out.repeat(beam_size, 1, 1)
encoder_mask = torch.ones(
beam_size, 1, encoder_out.size(1), dtype=torch.bool, device=device
)
# used for right to left decoder
r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos, self.ignore_id)
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out, encoder_mask, hyps_pad, hyps_lens, r_hyps_pad, reverse_weight
) # (beam_size, max_hyps_len, vocab_size)
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
decoder_out = decoder_out.cpu().numpy()
# r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
# conventional transformer decoder.
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
r_decoder_out = r_decoder_out.cpu().numpy()
# Only use decoder score for rescoring
best_score = -float("inf")
best_index = 0
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp[0]):
score += decoder_out[i][j][w]
score += decoder_out[i][len(hyp[0])][self.eos]
# add right to left decoder score
if reverse_weight > 0:
r_score = 0.0
for j, w in enumerate(hyp[0]):
r_score += r_decoder_out[i][len(hyp[0]) - j - 1][w]
r_score += r_decoder_out[i][len(hyp[0])][self.eos]
score = score * (1 - reverse_weight) + r_score * reverse_weight
# add ctc score
score += hyp[1] * ctc_weight
if score > best_score:
best_score = score
best_index = i
return hyps[best_index][0], best_score
@torch.jit.unused
def load_lfmmi_resource(self):
with open("{}/tokens.txt".format(self.lfmmi_dir), "r") as fin:
for line in fin:
arr = line.strip().split()
if arr[0] == "<sos/eos>":
self.sos_eos_id = int(arr[1])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.graph_compiler = MmiTrainingGraphCompiler(
self.lfmmi_dir,
device=device,
oov="<UNK>",
sos_id=self.sos_eos_id,
eos_id=self.sos_eos_id,
)
self.lfmmi = LFMMILoss(
graph_compiler=self.graph_compiler,
den_scale=1,
use_pruned_intersect=False,
)
self.word_table = {}
with open("{}/words.txt".format(self.lfmmi_dir), "r") as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
self.word_table[int(arr[1])] = arr[0]
@torch.jit.unused
def _calc_lfmmi_loss(self, encoder_out, encoder_mask, text):
ctc_probs = self.ctc.log_softmax(encoder_out)
supervision_segments = torch.stack(
(
torch.arange(len(encoder_mask)),
torch.zeros(len(encoder_mask)),
encoder_mask.squeeze(dim=1).sum(dim=1).to("cpu"),
),
1,
).to(torch.int32)
dense_fsa_vec = k2.DenseFsaVec(
ctc_probs,
supervision_segments,
allow_truncate=3,
)
text = [
" ".join([self.word_table[j.item()] for j in i if j != -1]) for i in text
]
loss = self.lfmmi(dense_fsa_vec=dense_fsa_vec, texts=text) / len(text)
return loss
def load_hlg_resource_if_necessary(self, hlg, word):
if not hasattr(self, "hlg"):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.hlg = k2.Fsa.from_dict(torch.load(hlg, map_location=device))
if not hasattr(self.hlg, "lm_scores"):
self.hlg.lm_scores = self.hlg.scores.clone()
if not hasattr(self, "word_table"):
self.word_table = {}
with open(word, "r") as fin:
for line in fin:
arr = line.strip().split()
assert len(arr) == 2
self.word_table[int(arr[1])] = arr[0]
@torch.no_grad()
def hlg_onebest(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
hlg: str = "",
word: str = "",
symbol_table: Dict[str, int] = None,
) -> List[int]:
self.load_hlg_resource_if_necessary(hlg, word)
encoder_out, encoder_mask = self._forward_encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
) # (B, maxlen, encoder_dim)
ctc_probs = self.ctc.log_softmax(encoder_out) # (1, maxlen, vocab_size)
supervision_segments = torch.stack(
(
torch.arange(len(encoder_mask)),
torch.zeros(len(encoder_mask)),
encoder_mask.squeeze(dim=1).sum(dim=1).cpu(),
),
1,
).to(torch.int32)
lattice = get_lattice(
nnet_output=ctc_probs,
decoding_graph=self.hlg,
supervision_segments=supervision_segments,
search_beam=20,
output_beam=7,
min_active_states=30,
max_active_states=10000,
subsampling_factor=4,
)
best_path = one_best_decoding(lattice=lattice, use_double_scores=True)
hyps = get_texts(best_path)
hyps = [[symbol_table[k] for j in i for k in self.word_table[j]] for i in hyps]
return hyps
@torch.no_grad()
def hlg_rescore(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
lm_scale: float = 0,
decoder_scale: float = 0,
r_decoder_scale: float = 0,
hlg: str = "",
word: str = "",
symbol_table: Dict[str, int] = None,
) -> List[int]:
self.load_hlg_resource_if_necessary(hlg, word)
device = speech.device
encoder_out, encoder_mask = self._forward_encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
simulate_streaming,
) # (B, maxlen, encoder_dim)
ctc_probs = self.ctc.log_softmax(encoder_out) # (1, maxlen, vocab_size)
supervision_segments = torch.stack(
(
torch.arange(len(encoder_mask)),
torch.zeros(len(encoder_mask)),
encoder_mask.squeeze(dim=1).sum(dim=1).cpu(),
),
1,
).to(torch.int32)
lattice = get_lattice(
nnet_output=ctc_probs,
decoding_graph=self.hlg,
supervision_segments=supervision_segments,
search_beam=20,
output_beam=7,
min_active_states=30,
max_active_states=10000,
subsampling_factor=4,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=100,
use_double_scores=True,
nbest_scale=0.5,
)
nbest = nbest.intersect(lattice)
assert hasattr(nbest.fsa, "lm_scores")
assert hasattr(nbest.fsa, "tokens")
assert isinstance(nbest.fsa.tokens, torch.Tensor)
tokens_shape = nbest.fsa.arcs.shape().remove_axis(1)
tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens)
tokens = tokens.remove_values_leq(0)
hyps = tokens.tolist()
# cal attention_score
hyps_pad = pad_sequence(
[torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps],
True,
self.ignore_id,
) # (beam_size, max_hyps_len)
ori_hyps_pad = hyps_pad
hyps_lens = torch.tensor(
[len(hyp) for hyp in hyps], device=device, dtype=torch.long
) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out_repeat = []
tot_scores = nbest.tot_scores()
repeats = [tot_scores[i].shape[0] for i in range(tot_scores.dim0)]
for i in range(len(encoder_out)):
encoder_out_repeat.append(encoder_out[i : i + 1].repeat(repeats[i], 1, 1))
encoder_out = torch.concat(encoder_out_repeat, dim=0)
encoder_mask = torch.ones(
encoder_out.size(0), 1, encoder_out.size(1), dtype=torch.bool, device=device
)
# used for right to left decoder
r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos, self.ignore_id)
reverse_weight = 0.5
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out, encoder_mask, hyps_pad, hyps_lens, r_hyps_pad, reverse_weight
) # (beam_size, max_hyps_len, vocab_size)
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
decoder_out = decoder_out
# r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
# conventional transformer decoder.
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
r_decoder_out = r_decoder_out
decoder_scores = torch.tensor(
[
sum([decoder_out[i, j, hyps[i][j]] for j in range(len(hyps[i]))])
for i in range(len(hyps))
],
device=device,
)
r_decoder_scores = []
for i in range(len(hyps)):
score = 0
for j in range(len(hyps[i])):
score += r_decoder_out[i, len(hyps[i]) - j - 1, hyps[i][j]]
score += r_decoder_out[i, len(hyps[i]), self.eos]
r_decoder_scores.append(score)
r_decoder_scores = torch.tensor(r_decoder_scores, device=device)
am_scores = nbest.compute_am_scores()
ngram_lm_scores = nbest.compute_lm_scores()
tot_scores = (
am_scores.values
+ lm_scale * ngram_lm_scores.values
+ decoder_scale * decoder_scores
+ r_decoder_scale * r_decoder_scores
)
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
hyps = get_texts(best_path)
hyps = [[symbol_table[k] for j in i for k in self.word_table[j]] for i in hyps]
return hyps
@torch.jit.export
def subsampling_rate(self) -> int:
"""Export interface for c++ call, return subsampling_rate of the
model
"""
return self.encoder.embed.subsampling_rate
@torch.jit.export
def right_context(self) -> int:
"""Export interface for c++ call, return right_context of the model"""
return self.encoder.embed.right_context
@torch.jit.export
def sos_symbol(self) -> int:
"""Export interface for c++ call, return sos symbol id of the model"""
return self.sos
@torch.jit.export
def eos_symbol(self) -> int:
"""Export interface for c++ call, return eos symbol id of the model"""
return self.eos
@torch.jit.export
def forward_encoder_chunk(
self,
xs: torch.Tensor,
offset: int,
required_cache_size: int,
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
""" Export interface for c++ call, give input chunk xs, and return
output from time 0 to current chunk.
Args:
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
where `time == (chunk_size - 1) * subsample_rate + \
subsample.right_context + 1`
offset (int): current offset in encoder output time stamp
required_cache_size (int): cache size required for next chunk
compuation
>=0: actual cache size
<0: means all history cache is required
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
transformer/conformer attention, with shape
(elayers, head, cache_t1, d_k * 2), where
`head * d_k == hidden-dim` and
`cache_t1 == chunk_size * num_decoding_left_chunks`.
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
(elayers, b=1, hidden-dim, cache_t2), where
`cache_t2 == cnn.lorder - 1`
Returns:
torch.Tensor: output of current input xs,
with shape (b=1, chunk_size, hidden-dim).
torch.Tensor: new attention cache required for next chunk, with
dynamic shape (elayers, head, ?, d_k * 2)
depending on required_cache_size.
torch.Tensor: new conformer cnn cache required for next chunk, with
same shape as the original cnn_cache.
"""
return self.encoder.forward_chunk(
xs, offset, required_cache_size, att_cache, cnn_cache
)
@torch.jit.export
def ctc_activation(self, xs: torch.Tensor) -> torch.Tensor:
"""Export interface for c++ call, apply linear transform and log
softmax before ctc
Args:
xs (torch.Tensor): encoder output
Returns:
torch.Tensor: activation before ctc
"""
return self.ctc.log_softmax(xs)
@torch.jit.export
def is_bidirectional_decoder(self) -> bool:
"""
Returns:
torch.Tensor: decoder output
"""
if hasattr(self.decoder, "right_decoder"):
return True
else:
return False
@torch.jit.export
def forward_attention_decoder(
self,
hyps: torch.Tensor,
hyps_lens: torch.Tensor,
encoder_out: torch.Tensor,
reverse_weight: float = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Export interface for c++ call, forward decoder with multiple
hypothesis from ctc prefix beam search and one encoder output
Args:
hyps (torch.Tensor): hyps from ctc prefix beam search, already
pad sos at the begining
hyps_lens (torch.Tensor): length of each hyp in hyps
encoder_out (torch.Tensor): corresponding encoder output
r_hyps (torch.Tensor): hyps from ctc prefix beam search, already
pad eos at the begining which is used fo right to left decoder
reverse_weight: used for verfing whether used right to left decoder,
> 0 will use.
Returns:
torch.Tensor: decoder output
"""
assert encoder_out.size(0) == 1
num_hyps = hyps.size(0)
assert hyps_lens.size(0) == num_hyps
encoder_out = encoder_out.repeat(num_hyps, 1, 1)
encoder_mask = torch.ones(
num_hyps,
1,
encoder_out.size(1),
dtype=torch.bool,
device=encoder_out.device,
)
# input for right to left decoder
# this hyps_lens has count <sos> token, we need minus it.
r_hyps_lens = hyps_lens - 1
# this hyps has included <sos> token, so it should be
# convert the original hyps.
r_hyps = hyps[:, 1:]
# >>> r_hyps
# >>> tensor([[ 1, 2, 3],
# >>> [ 9, 8, 4],
# >>> [ 2, -1, -1]])
# >>> r_hyps_lens
# >>> tensor([3, 3, 1])
# NOTE(Mddct): `pad_sequence` is not supported by ONNX, it is used
# in `reverse_pad_list` thus we have to refine the below code.
# Issue: https://github.com/wenet-e2e/wenet/issues/1113
# Equal to:
# >>> r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(self.ignore_id))
# >>> r_hyps, _ = add_sos_eos(r_hyps, self.sos, self.eos, self.ignore_id)
max_len = torch.max(r_hyps_lens)
index_range = torch.arange(0, max_len, 1).to(encoder_out.device)
seq_len_expand = r_hyps_lens.unsqueeze(1)
seq_mask = seq_len_expand > index_range # (beam, max_len)
# >>> seq_mask
# >>> tensor([[ True, True, True],
# >>> [ True, True, True],
# >>> [ True, False, False]])
index = (seq_len_expand - 1) - index_range # (beam, max_len)
# >>> index
# >>> tensor([[ 2, 1, 0],
# >>> [ 2, 1, 0],
# >>> [ 0, -1, -2]])
index = index * seq_mask
# >>> index
# >>> tensor([[2, 1, 0],
# >>> [2, 1, 0],
# >>> [0, 0, 0]])
r_hyps = torch.gather(r_hyps, 1, index)
# >>> r_hyps
# >>> tensor([[3, 2, 1],
# >>> [4, 8, 9],
# >>> [2, 2, 2]])
r_hyps = torch.where(seq_mask, r_hyps, self.eos)
# >>> r_hyps
# >>> tensor([[3, 2, 1],
# >>> [4, 8, 9],
# >>> [2, eos, eos]])
r_hyps = torch.cat([hyps[:, 0:1], r_hyps], dim=1)
# >>> r_hyps
# >>> tensor([[sos, 3, 2, 1],
# >>> [sos, 4, 8, 9],
# >>> [sos, 2, eos, eos]])
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out, encoder_mask, hyps, hyps_lens, r_hyps, reverse_weight
) # (num_hyps, max_hyps_len, vocab_size)
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
# right to left decoder may be not used during decoding process,
# which depends on reverse_weight param.
# r_dccoder_out will be 0.0, if reverse_weight is 0.0
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
return decoder_out, r_decoder_out
|