Spaces:
Running
Running
File size: 7,237 Bytes
8c92a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# Amphion GAN-based Vocoder Recipe
## Supported Model Architectures
GAN-based Vocoder consists of a generator and multiple discriminators, as illustrated below:
<br>
<div align="center">
<img src="../../../imgs/vocoder/gan/pipeline.png" width="40%">
</div>
<br>
Until now, Amphion GAN-based Vocoder has supported the following generators and discriminators.
- **Generators**
- [MelGAN](https://arxiv.org/abs/1910.06711)
- [HiFi-GAN](https://arxiv.org/abs/2010.05646)
- [NSF-HiFiGAN](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts)
- [BigVGAN](https://arxiv.org/abs/2206.04658)
- [APNet](https://arxiv.org/abs/2305.07952)
- **Discriminators**
- [Multi-Scale Discriminator](https://arxiv.org/abs/2010.05646)
- [Multi-Period Discriminator](https://arxiv.org/abs/2010.05646)
- [Multi-Resolution Discriminator](https://arxiv.org/abs/2011.09631)
- [Multi-Scale Short-Time Fourier Transform Discriminator](https://arxiv.org/abs/2210.13438)
- [**Multi-Scale Constant-Q Transfrom Discriminator (ours)**](https://arxiv.org/abs/2311.14957)
You can use any vocoder architecture with any dataset you want. There are four steps in total:
1. Data preparation
2. Feature extraction
3. Training
4. Inference
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```
## 1. Data Preparation
You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed [here](../../../datasets/README.md).
### Configuration
Specify the dataset path in `exp_config_base.json`. Note that you can change the `dataset` list to use your preferred datasets.
```json
"dataset": [
"csd",
"kising",
"m4singer",
"nus48e",
"opencpop",
"opensinger",
"opera",
"pjs",
"popbutfy",
"popcs",
"ljspeech",
"vctk",
"libritts",
],
"dataset_path": {
// TODO: Fill in your dataset path
"csd": "[dataset path]",
"kising": "[dataset path]",
"m4singer": "[dataset path]",
"nus48e": "[dataset path]",
"opencpop": "[dataset path]",
"opensinger": "[dataset path]",
"opera": "[dataset path]",
"pjs": "[dataset path]",
"popbutfy": "[dataset path]",
"popcs": "[dataset path]",
"ljspeech": "[dataset path]",
"vctk": "[dataset path]",
"libritts": "[dataset path]",
},
```
### 2. Feature Extraction
The needed features are speficied in the individual vocoder direction so it doesn't require any modification.
### Configuration
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config_base.json`:
```json
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder"
"log_dir": "ckpts/vocoder",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
```
### Run
Run the `run.sh` as the preproces stage (set `--stage 1`).
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 1
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
## 3. Training
### Configuration
We provide the default hyparameters in the `exp_config_base.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
```json
"train": {
"batch_size": 32,
"max_epoch": 1000000,
"save_checkpoint_stride": [20],
"adamw": {
"lr": 2.0e-4,
"adam_b1": 0.8,
"adam_b2": 0.99
},
"exponential_lr": {
"lr_decay": 0.999
},
}
```
You can also choose any amount of prefered discriminators for training in the `exp_config_base.json`.
```json
"discriminators": [
"msd",
"mpd",
"msstftd",
"mssbcqtd",
],
```
### Run
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`.
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 2 --name [YourExptName]
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
If you want to resume or finetune from a pretrained model, run:
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 2 \
--name [YourExptName] \
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \
```
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`.
## 4. Inference
### Run
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from_audio`.
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode [Your chosen inference mode] \
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### a. Inference from Dataset
Run the `run.sh` with specified datasets, here is an example.
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_dataset \
--infer_datasets "libritts vctk ljspeech" \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### b. Inference from Features
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure:
```plaintext
β£ {infer_feature_dir}
β β£ mels
β β β£ sample1.npy
β β β£ sample2.npy
β β£ f0s (required if you use NSF-HiFiGAN)
β β β£ sample1.npy
β β β£ sample2.npy
```
Then run the `run.sh` with specificed folder direction, here is an example.
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_feature \
--infer_feature_dir [Your path to your predicted acoustic features] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
#### c. Inference from Audios
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure:
```plaintext
β£ audios
β β£ sample1.wav
β β£ sample2.wav
```
Then run the `run.sh` with specificed folder direction, here is an example.
```bash
sh egs/vocoder/gan/{vocoder_name}/run.sh --stage 3 \
--infer_mode infer_from_audio \
--infer_audio_dir [Your path to your audio files] \
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \
```
|