Spaces:
Running
Running
File size: 29,083 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import random
from pathlib import Path
import re
import glob
import accelerate
import json
import numpy as np
import torch
from accelerate.utils import ProjectConfiguration
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch
import torch.nn.functional as F
import torchaudio
from accelerate.logging import get_logger
from models.codec.facodec.facodec_dataset import FAcodecDataset, FAcodecCollator
from models.codec.codec_sampler import build_samplers
from models.codec.codec_trainer import CodecTrainer
from modules.dac.nn.loss import (
MultiScaleSTFTLoss,
MelSpectrogramLoss,
GANLoss,
L1Loss,
FocalLoss,
)
from audiotools import AudioSignal
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
try:
import nemo.collections.asr as nemo_asr
except ImportError:
print(
"Unable to import nemo_asr, titanet outputs will be set to random values, you may only run debugging mode. DO NOT USE THIS FOR TRAINING"
)
nemo_asr = None
from models.codec.facodec.modules.commons import (
build_model,
load_checkpoint,
load_F0_models,
log_norm,
)
from models.codec.facodec.optimizer import build_optimizer
class FAcodecTrainer(CodecTrainer):
def __init__(self, args, cfg):
super().__init__()
self.args = args
self.cfg = cfg
cfg.exp_name = args.exp_name
# Init accelerator
self._init_accelerator()
self.accelerator.wait_for_everyone()
# Init logger
with self.accelerator.main_process_first():
self.logger = get_logger(args.exp_name, log_level=args.log_level)
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
self.logger.info(f"Experiment name: {args.exp_name}")
self.logger.info(f"Experiment directory: {self.exp_dir}")
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# Init training status
self.batch_count: int = 0
self.step: int = 0
self.epoch: int = 0
self.max_epoch = (
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
)
self.logger.info(
"Max epoch: {}".format(
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
)
)
# Check potential erorrs
if self.accelerator.is_main_process:
self._check_basic_configs()
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
self.checkpoints_path = [
[] for _ in range(len(self.save_checkpoint_stride))
]
self.run_eval = self.cfg.train.run_eval
# Set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# Build dataloader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# Build model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.model = self._build_model()
end = time.monotonic_ns()
for _, model in self.model.items():
self.logger.debug(model)
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M")
# Build optimizers and schedulers
with self.accelerator.main_process_first():
self.logger.info("Building optimizer and scheduler...")
start = time.monotonic_ns()
self.optimizer = self._build_optimizer()
end = time.monotonic_ns()
self.logger.info(
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
)
# Build helper models
with self.accelerator.main_process_first():
self.logger.info("Building helper models...")
start = time.monotonic_ns()
self._built_helper_model()
end = time.monotonic_ns()
self.logger.info(
f"Building helper models done in {(end - start) / 1e6:.2f}ms"
)
# Accelerator preparing
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
for k in self.model:
self.model[k] = self.accelerator.prepare(self.model[k])
for k, v in self.optimizer.optimizers.items():
self.optimizer.optimizers[k] = self.accelerator.prepare(
self.optimizer.optimizers[k]
)
self.optimizer.schedulers[k] = self.accelerator.prepare(
self.optimizer.schedulers[k]
)
end = time.monotonic_ns()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")
# Build criterions
with self.accelerator.main_process_first():
self.logger.info("Building criterion...")
start = time.monotonic_ns()
self.criterions = self._build_criterion()
end = time.monotonic_ns()
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")
# Resume checkpoints
with self.accelerator.main_process_first():
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if args.resume_type:
self.logger.info("Resuming from checkpoint...")
start = time.monotonic_ns()
ckpt_path = Path(args.checkpoint)
if self._is_valid_pattern(ckpt_path.parts[-1]):
ckpt_path = self._load_model(args.checkpoint, args.resume_type)
else:
ckpt_path = self._load_model(
args.checkpoint, resume_type=args.resume_type
)
end = time.monotonic_ns()
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
self.checkpoints_path = json.load(
open(os.path.join(ckpt_path, "ckpts.json"), "r")
)
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# Save config
self.config_save_path = os.path.join(self.exp_dir, "args.json")
def _build_dataset(self):
return FAcodecDataset, FAcodecCollator
def _build_criterion(self):
criterions = dict()
stft_criterion = MultiScaleSTFTLoss()
mel_criterion = MelSpectrogramLoss(
n_mels=[5, 10, 20, 40, 80, 160, 320],
window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
mel_fmin=[0, 0, 0, 0, 0, 0, 0],
mel_fmax=[None, None, None, None, None, None, None],
pow=1.0,
mag_weight=0.0,
clamp_eps=1e-5,
)
content_criterion = FocalLoss(gamma=2)
l1_criterion = L1Loss()
criterions["stft"] = stft_criterion
criterions["mel"] = mel_criterion
criterions["l1"] = l1_criterion
criterions["content"] = content_criterion
return criterions
def _build_model(self):
model = build_model(self.cfg.model_params)
_ = [model[key].to(self.accelerator.device) for key in model]
return model
def _built_helper_model(self):
device = self.accelerator.device
self.pitch_extractor = load_F0_models(self.cfg.F0_path).to(device)
# load model and processor
self.w2v_processor = Wav2Vec2Processor.from_pretrained(
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
)
self.w2v_model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-xlsr-53-espeak-cv-ft"
).to(device)
self.w2v_model.eval()
if nemo_asr is None:
self.speaker_model = None
else:
self.speaker_model = (
nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained(
"nvidia/speakerverification_en_titanet_large"
)
)
self.speaker_model = self.speaker_model.to(device)
self.speaker_model.eval()
def _build_optimizer(self):
scheduler_params = {
"warmup_steps": self.cfg.loss_params.warmup_steps,
"base_lr": self.cfg.loss_params.base_lr,
}
optimizer = build_optimizer(
{key: self.model[key] for key in self.model},
scheduler_params_dict={key: scheduler_params.copy() for key in self.model},
lr=float(scheduler_params["base_lr"]),
)
return optimizer
def train_loop(self):
"""Training process"""
self.accelerator.wait_for_everyone()
# Dump config
if self.accelerator.is_main_process:
self._dump_cfg(self.config_save_path)
_ = [self.model[key].train() for key in self.model]
self.optimizer.zero_grad()
# Sync and start training
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
# Train and Validate
train_total_loss, train_losses = self._train_epoch()
for key, loss in train_losses.items():
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
self.accelerator.log(
{
"Epoch/Train Total Loss": train_total_loss,
},
step=self.epoch,
)
# Update scheduler
self.accelerator.wait_for_everyone()
# Check save checkpoint interval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
run_eval |= self.run_eval[i]
# Save checkpoints
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and save_checkpoint:
print("Saving..")
state = {
"net": {key: self.model[key].state_dict() for key in self.model},
"optimizer": self.optimizer.state_dict(),
"scheduler": self.optimizer.scheduler_state_dict(),
"iters": self.step,
"epoch": self.epoch,
}
save_path = os.path.join(
self.checkpoint_dir,
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters),
)
torch.save(state, save_path)
json.dump(
self.checkpoints_path,
open(os.path.join(self.checkpoint_dir, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
self.accelerator.wait_for_everyone()
self.epoch += 1
# Finish training
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}".format(
self.epoch,
self.step,
),
)
print("Saving..")
state = {
"net": {key: self.model[key].state_dict() for key in self.model},
"optimizer": self.optimizer.state_dict(),
"scheduler": self.optimizer.scheduler_state_dict(),
"iters": self.step,
"epoch": self.epoch,
}
save_path = os.path.join(
self.checkpoint_dir,
"FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters),
)
torch.save(state, save_path)
def _train_epoch(self):
"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
_ = [self.model[key].train() for key in self.model]
epoch_losses: dict = {}
epoch_total_loss: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Get losses
total_loss, losses = self._train_step(batch)
self.batch_count += 1
# Log info
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
self.accelerator.log(
{
"Step/Learning Rate": (
self.optimizer.schedulers["encoder"].get_last_lr()[0]
if self.step != 0
else 0
)
},
step=self.step,
)
for key, _ in losses.items():
self.accelerator.log(
{
"Step/Train {} Loss".format(key): losses[key],
},
step=self.step,
)
if not epoch_losses:
epoch_losses = losses
else:
for key, value in losses.items():
epoch_losses[key] += value
epoch_total_loss += total_loss
self.step += 1
# Get and log total losses
self.accelerator.wait_for_everyone()
epoch_total_loss = (
epoch_total_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_total_loss, epoch_losses
def _train_step(self, data):
"""Training forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_train_epoch`` for usage.
"""
# Init losses
train_losses = {}
total_loss = 0
# Use input feature to get predictions
data = [b.to(self.accelerator.device, non_blocking=True) for b in data]
waves, mels, wave_lengths, mel_input_length = data
# extract semantic latent with w2v model
waves_16k = torchaudio.functional.resample(waves, 24000, 16000)
w2v_input = self.w2v_processor(
waves_16k, sampling_rate=16000, return_tensors="pt"
).input_values.to(self.accelerator.device)
with torch.no_grad():
w2v_outputs = self.w2v_model(w2v_input.squeeze(0)).logits
predicted_ids = torch.argmax(w2v_outputs, dim=-1)
phone_ids = (
F.interpolate(
predicted_ids.unsqueeze(0).float(), mels.size(-1), mode="nearest"
)
.long()
.squeeze(0)
)
# get clips
mel_seg_len = min(
[int(mel_input_length.min().item()), self.cfg.train.max_frame_len]
)
gt_mel_seg = []
wav_seg = []
w2v_seg = []
for bib in range(len(mel_input_length)):
mel_length = int(mel_input_length[bib].item())
random_start = (
np.random.randint(0, mel_length - mel_seg_len)
if mel_length != mel_seg_len
else 0
)
gt_mel_seg.append(mels[bib, :, random_start : random_start + mel_seg_len])
# w2v_seg.append(w2v_latent[bib, :, random_start:random_start + mel_seg_len])
w2v_seg.append(phone_ids[bib, random_start : random_start + mel_seg_len])
y = waves[bib][random_start * 300 : (random_start + mel_seg_len) * 300]
wav_seg.append(y.to(self.accelerator.device))
gt_mel_seg = torch.stack(gt_mel_seg).detach()
wav_seg = torch.stack(wav_seg).float().detach().unsqueeze(1)
w2v_seg = torch.stack(w2v_seg).float().detach()
with torch.no_grad():
real_norm = log_norm(gt_mel_seg.unsqueeze(1)).squeeze(1).detach()
F0_real, _, _ = self.pitch_extractor(gt_mel_seg.unsqueeze(1))
# normalize f0
# Remove unvoiced frames (replace with -1)
gt_glob_f0s = []
f0_targets = []
for bib in range(len(F0_real)):
voiced_indices = F0_real[bib] > 5.0
f0_voiced = F0_real[bib][voiced_indices]
if len(f0_voiced) != 0:
# Convert to log scale
log_f0 = f0_voiced.log2()
# Calculate mean and standard deviation
mean_f0 = log_f0.mean()
std_f0 = log_f0.std()
# Normalize the F0 sequence
normalized_f0 = (log_f0 - mean_f0) / std_f0
# Create the normalized F0 sequence with unvoiced frames
normalized_sequence = torch.zeros_like(F0_real[bib])
normalized_sequence[voiced_indices] = normalized_f0
normalized_sequence[~voiced_indices] = (
-10
) # Assign -10 to unvoiced frames
gt_glob_f0s.append(mean_f0)
else:
normalized_sequence = torch.zeros_like(F0_real[bib]) - 10.0
gt_glob_f0s.append(torch.tensor(0.0).to(self.accelerator.device))
# f0_targets.append(normalized_sequence[single_side_context // 200:-single_side_context // 200])
f0_targets.append(normalized_sequence)
f0_targets = torch.stack(f0_targets).to(self.accelerator.device)
# fill nan with -10
f0_targets[torch.isnan(f0_targets)] = -10.0
# fill inf with -10
f0_targets[torch.isinf(f0_targets)] = -10.0
# if frame_rate not equal to 80, interpolate f0 from frame rate of 80 to target frame rate
if self.cfg.preprocess_params.frame_rate != 80:
f0_targets = F.interpolate(
f0_targets.unsqueeze(1),
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate,
mode="nearest",
).squeeze(1)
w2v_seg = F.interpolate(
w2v_seg,
mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate,
mode="nearest",
)
wav_seg_input = wav_seg
wav_seg_target = wav_seg
z = self.model.encoder(wav_seg_input)
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
z, wav_seg_input, n_c=2, full_waves=waves, wave_lens=wave_lengths
)
preds, rev_preds = self.model.fa_predictors(quantized, timbre)
pred_wave = self.model.decoder(z)
len_diff = wav_seg_target.size(-1) - pred_wave.size(-1)
if len_diff > 0:
wav_seg_target = wav_seg_target[..., len_diff // 2 : -len_diff // 2]
# discriminator loss
d_fake = self.model.discriminator(pred_wave.detach())
d_real = self.model.discriminator(wav_seg_target)
loss_d = 0
for x_fake, x_real in zip(d_fake, d_real):
loss_d += torch.mean(x_fake[-1] ** 2)
loss_d += torch.mean((1 - x_real[-1]) ** 2)
self.optimizer.zero_grad()
self.accelerator.backward(loss_d)
grad_norm_d = torch.nn.utils.clip_grad_norm_(
self.model.discriminator.parameters(), 10.0
)
self.optimizer.step("discriminator")
self.optimizer.scheduler(key="discriminator")
# generator loss
signal = AudioSignal(wav_seg_target, sample_rate=24000)
recons = AudioSignal(pred_wave, sample_rate=24000)
stft_loss = self.criterions["stft"](recons, signal)
mel_loss = self.criterions["mel"](recons, signal)
waveform_loss = self.criterions["l1"](recons, signal)
d_fake = self.model.discriminator(pred_wave)
d_real = self.model.discriminator(wav_seg_target)
loss_g = 0
for x_fake in d_fake:
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
loss_feature = 0
for i in range(len(d_fake)):
for j in range(len(d_fake[i]) - 1):
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
pred_f0, pred_uv = preds["f0"], preds["uv"]
rev_pred_f0, rev_pred_uv = rev_preds["rev_f0"], rev_preds["rev_uv"]
common_min_size = min(pred_f0.size(-2), f0_targets.size(-1))
f0_targets = f0_targets[..., :common_min_size]
real_norm = real_norm[..., :common_min_size]
f0_loss = F.smooth_l1_loss(
f0_targets, pred_f0.squeeze(-1)[..., :common_min_size]
)
uv_loss = F.smooth_l1_loss(
real_norm, pred_uv.squeeze(-1)[..., :common_min_size]
)
rev_f0_loss = (
F.smooth_l1_loss(f0_targets, rev_pred_f0.squeeze(-1)[..., :common_min_size])
if rev_pred_f0 is not None
else torch.FloatTensor([0]).to(self.accelerator.device)
)
rev_uv_loss = (
F.smooth_l1_loss(real_norm, rev_pred_uv.squeeze(-1)[..., :common_min_size])
if rev_pred_uv is not None
else torch.FloatTensor([0]).to(self.accelerator.device)
)
tot_f0_loss = f0_loss + rev_f0_loss
tot_uv_loss = uv_loss + rev_uv_loss
pred_content = preds["content"]
rev_pred_content = rev_preds["rev_content"]
target_content_latents = w2v_seg[..., :common_min_size]
content_loss = self.criterions["content"](
pred_content.transpose(1, 2)[..., :common_min_size],
target_content_latents.long(),
)
rev_content_loss = (
self.criterions["content"](
rev_pred_content.transpose(1, 2)[..., :common_min_size],
target_content_latents.long(),
)
if rev_pred_content is not None
else torch.FloatTensor([0]).to(self.accelerator.device)
)
tot_content_loss = content_loss + rev_content_loss
if self.speaker_model is not None:
spk_logits = torch.cat(
[
self.speaker_model.infer_segment(w16.cpu()[..., :wl])[1]
for w16, wl in zip(waves_16k, wave_lengths)
],
dim=0,
)
spk_labels = spk_logits.argmax(dim=-1)
else:
spk_labels = torch.zeros([len(waves_16k)], dtype=torch.long).to(
self.accelerator.device
)
spk_pred_logits = preds["timbre"]
spk_loss = F.cross_entropy(spk_pred_logits, spk_labels)
x_spk_pred_logits = rev_preds["x_timbre"]
x_spk_loss = (
F.cross_entropy(x_spk_pred_logits, spk_labels)
if x_spk_pred_logits is not None
else torch.FloatTensor([0]).to(self.accelerator.device)
)
tot_spk_loss = spk_loss + x_spk_loss
loss_gen_all = (
mel_loss * 15.0
+ loss_feature * 1.0
+ loss_g * 1.0
+ commitment_loss * 0.25
+ codebook_loss * 1.0
+ tot_f0_loss * 1.0
+ tot_uv_loss * 1.0
+ tot_content_loss * 5.0
+ tot_spk_loss * 5.0
)
self.optimizer.zero_grad()
self.accelerator.backward(loss_gen_all)
with torch.no_grad():
total_loss = loss_gen_all.item()
train_losses["stft"] = stft_loss.item()
train_losses["mel"] = mel_loss.item()
train_losses["l1"] = waveform_loss.item()
train_losses["f0"] = f0_loss.item()
train_losses["uv"] = uv_loss.item()
train_losses["content"] = content_loss.item()
train_losses["speaker"] = spk_loss.item()
train_losses["rev_f0"] = rev_f0_loss.item()
train_losses["rev_uv"] = rev_uv_loss.item()
train_losses["rev_content"] = rev_content_loss.item()
train_losses["rev_speaker"] = x_spk_loss.item()
train_losses["feature"] = loss_feature.item()
train_losses["generator"] = loss_g.item()
train_losses["commitment"] = commitment_loss.item()
train_losses["codebook"] = codebook_loss.item()
# discriminators
train_losses["discriminator"] = loss_d.item()
return total_loss, train_losses
def _inference(self, eval_wave):
"""Inference during training for test audios."""
z = self.model.encoder(
eval_wave[None, None, ...].to(self.accelerator.device).float()
)
z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
z, eval_wave[None, None, ...], n_c=self.cfg.model_params.n_c_codebooks
)
full_pred_wave = self.model.decoder(z)
return full_pred_wave[0]
def _load_model(self, checkpoint_path=None, resume_type="resume"):
"""Load model from checkpoint. If checkpoint_path is None, it will
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
None, it will load the checkpoint specified by checkpoint_path. **Only use this
method after** ``accelerator.prepare()``.
"""
if resume_type == "resume":
if checkpoint_path is None:
available_checkpoints = glob.glob(
os.path.join(self.checkpoint_dir, "FAcodc_epoch_*_step_*.pth")
)
# find the checkpoint that has the highest step number
latest_checkpoint = max(
available_checkpoints,
key=lambda x: int(x.split("_")[-1].split(".")[0]),
)
earliest_checkpoint = min(
available_checkpoints,
key=lambda x: int(x.split("_")[-1].split(".")[0]),
)
# delete the earliest checkpoint
if (
earliest_checkpoint != latest_checkpoint
and self.accelerator.is_main_process
and len(available_checkpoints) > 4
):
os.remove(earliest_checkpoint)
print(f"Removed {earliest_checkpoint}")
else:
latest_checkpoint = checkpoint_path
self.model, self.optimizer, self.epoch, self.step = load_checkpoint(
self.model,
self.optimizer,
latest_checkpoint,
load_only_params=False,
ignore_modules=[],
is_distributed=self.accelerator.num_processes > 1,
)
else:
raise ValueError("Invalid resume type")
return checkpoint_path
def _count_parameters(self):
total_num = sum(
sum(p.numel() for p in self.model[key].parameters()) for key in self.model
)
# trainable_num = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
return total_num
|