Spaces:
Running
Running
File size: 9,044 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
from modules.neural_source_filter import *
from modules.vocoder_blocks import *
LRELU_SLOPE = 0.1
class ResBlock1(nn.Module):
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.cfg = cfg
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(nn.Module):
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock1, self).__init__()
self.cfg = cfg
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
]
)
self.convs.apply(init_weights)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
# This NSF Module is adopted from Xin Wang's NSF under the MIT License
# https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts
class SourceModuleHnNSF(nn.Module):
def __init__(
self, fs, harmonic_num=0, amp=0.1, noise_std=0.003, voiced_threshold=0
):
super(SourceModuleHnNSF, self).__init__()
self.amp = amp
self.noise_std = noise_std
self.l_sin_gen = SineGen(fs, harmonic_num, amp, noise_std, voiced_threshold)
self.l_linear = nn.Linear(harmonic_num + 1, 1)
self.l_tanh = nn.Tanh()
def forward(self, x, upp):
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
return sine_merge
class NSFHiFiGAN(nn.Module):
def __init__(self, cfg):
super(NSFHiFiGAN, self).__init__()
self.cfg = cfg
self.num_kernels = len(self.cfg.model.nsfhifigan.resblock_kernel_sizes)
self.num_upsamples = len(self.cfg.model.nsfhifigan.upsample_rates)
self.m_source = SourceModuleHnNSF(
fs=self.cfg.preprocess.sample_rate,
harmonic_num=self.cfg.model.nsfhifigan.harmonic_num,
)
self.noise_convs = nn.ModuleList()
self.conv_pre = weight_norm(
Conv1d(
self.cfg.preprocess.n_mel,
self.cfg.model.nsfhifigan.upsample_initial_channel,
7,
1,
padding=3,
)
)
resblock = ResBlock1 if self.cfg.model.nsfhifigan.resblock == "1" else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(
zip(
self.cfg.model.nsfhifigan.upsample_rates,
self.cfg.model.nsfhifigan.upsample_kernel_sizes,
)
):
c_cur = self.cfg.model.nsfhifigan.upsample_initial_channel // (2 ** (i + 1))
self.ups.append(
weight_norm(
ConvTranspose1d(
self.cfg.model.nsfhifigan.upsample_initial_channel // (2**i),
self.cfg.model.nsfhifigan.upsample_initial_channel
// (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
if i + 1 < len(self.cfg.model.nsfhifigan.upsample_rates):
stride_f0 = int(
np.prod(self.cfg.model.nsfhifigan.upsample_rates[i + 1 :])
)
self.noise_convs.append(
Conv1d(
1,
c_cur,
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=stride_f0 // 2,
)
)
else:
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
ch = self.cfg.model.nsfhifigan.upsample_initial_channel
for i in range(len(self.ups)):
ch //= 2
for j, (k, d) in enumerate(
zip(
self.cfg.model.nsfhifigan.resblock_kernel_sizes,
self.cfg.model.nsfhifigan.resblock_dilation_sizes,
)
):
self.resblocks.append(resblock(cfg, ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.upp = int(np.prod(self.cfg.model.nsfhifigan.upsample_rates))
def forward(self, x, f0):
har_source = self.m_source(f0, self.upp).transpose(1, 2)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
x_source = self.noise_convs[i](har_source)
length = min(x.shape[-1], x_source.shape[-1])
x = x[:, :, :length]
x_source = x[:, :, :length]
x = x + x_source
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
|