Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
import math | |
class FiLM(nn.Module): | |
def __init__(self, in_dim, cond_dim): | |
super().__init__() | |
self.gain = Linear(cond_dim, in_dim) | |
self.bias = Linear(cond_dim, in_dim) | |
nn.init.xavier_uniform_(self.gain.weight) | |
nn.init.constant_(self.gain.bias, 1) | |
nn.init.xavier_uniform_(self.bias.weight) | |
nn.init.constant_(self.bias.bias, 0) | |
def forward(self, x, condition): | |
gain = self.gain(condition) | |
bias = self.bias(condition) | |
if gain.dim() == 2: | |
gain = gain.unsqueeze(-1) | |
if bias.dim() == 2: | |
bias = bias.unsqueeze(-1) | |
return x * gain + bias | |
class Mish(nn.Module): | |
def forward(self, x): | |
return x * torch.tanh(F.softplus(x)) | |
def Conv1d(*args, **kwargs): | |
layer = nn.Conv1d(*args, **kwargs) | |
nn.init.kaiming_normal_(layer.weight) | |
return layer | |
def Linear(*args, **kwargs): | |
layer = nn.Linear(*args, **kwargs) | |
layer.weight.data.normal_(0.0, 0.02) | |
return layer | |
class SinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x): | |
device = x.device | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) | |
emb = x[:, None] * emb[None, :] | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class ResidualBlock(nn.Module): | |
def __init__(self, hidden_dim, attn_head, dilation, drop_out, has_cattn=False): | |
super().__init__() | |
self.hidden_dim = hidden_dim | |
self.dilation = dilation | |
self.has_cattn = has_cattn | |
self.attn_head = attn_head | |
self.drop_out = drop_out | |
self.dilated_conv = Conv1d( | |
hidden_dim, 2 * hidden_dim, 3, padding=dilation, dilation=dilation | |
) | |
self.diffusion_proj = Linear(hidden_dim, hidden_dim) | |
self.cond_proj = Conv1d(hidden_dim, hidden_dim * 2, 1) | |
self.out_proj = Conv1d(hidden_dim, hidden_dim * 2, 1) | |
if self.has_cattn: | |
self.attn = nn.MultiheadAttention( | |
hidden_dim, attn_head, 0.1, batch_first=True | |
) | |
self.film = FiLM(hidden_dim * 2, hidden_dim) | |
self.ln = nn.LayerNorm(hidden_dim) | |
self.dropout = nn.Dropout(self.drop_out) | |
def forward(self, x, x_mask, cond, diffusion_step, spk_query_emb): | |
diffusion_step = self.diffusion_proj(diffusion_step).unsqueeze(-1) # (B, d, 1) | |
cond = self.cond_proj(cond) # (B, 2*d, T) | |
y = x + diffusion_step | |
if x_mask != None: | |
y = y * x_mask.to(y.dtype)[:, None, :] # (B, 2*d, T) | |
if self.has_cattn: | |
y_ = y.transpose(1, 2) | |
y_ = self.ln(y_) | |
y_, _ = self.attn(y_, spk_query_emb, spk_query_emb) # (B, T, d) | |
y = self.dilated_conv(y) + cond # (B, 2*d, T) | |
if self.has_cattn: | |
y = self.film(y.transpose(1, 2), y_) # (B, T, 2*d) | |
y = y.transpose(1, 2) # (B, 2*d, T) | |
gate, filter_ = torch.chunk(y, 2, dim=1) | |
y = torch.sigmoid(gate) * torch.tanh(filter_) | |
y = self.out_proj(y) | |
residual, skip = torch.chunk(y, 2, dim=1) | |
if x_mask != None: | |
residual = residual * x_mask.to(y.dtype)[:, None, :] | |
skip = skip * x_mask.to(y.dtype)[:, None, :] | |
return (x + residual) / math.sqrt(2.0), skip | |
class WaveNet(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.in_dim = cfg.input_size | |
self.hidden_dim = cfg.hidden_size | |
self.out_dim = cfg.out_size | |
self.num_layers = cfg.num_layers | |
self.cross_attn_per_layer = cfg.cross_attn_per_layer | |
self.dilation_cycle = cfg.dilation_cycle | |
self.attn_head = cfg.attn_head | |
self.drop_out = cfg.drop_out | |
self.in_proj = Conv1d(self.in_dim, self.hidden_dim, 1) | |
self.diffusion_embedding = SinusoidalPosEmb(self.hidden_dim) | |
self.mlp = nn.Sequential( | |
Linear(self.hidden_dim, self.hidden_dim * 4), | |
Mish(), | |
Linear(self.hidden_dim * 4, self.hidden_dim), | |
) | |
self.cond_ln = nn.LayerNorm(self.hidden_dim) | |
self.layers = nn.ModuleList( | |
[ | |
ResidualBlock( | |
self.hidden_dim, | |
self.attn_head, | |
2 ** (i % self.dilation_cycle), | |
self.drop_out, | |
has_cattn=(i % self.cross_attn_per_layer == 0), | |
) | |
for i in range(self.num_layers) | |
] | |
) | |
self.skip_proj = Conv1d(self.hidden_dim, self.hidden_dim, 1) | |
self.out_proj = Conv1d(self.hidden_dim, self.out_dim, 1) | |
nn.init.zeros_(self.out_proj.weight) | |
def forward(self, x, x_mask, cond, diffusion_step, spk_query_emb): | |
""" | |
x: (B, 128, T) | |
x_mask: (B, T), mask is 0 | |
cond: (B, T, 512) | |
diffusion_step: (B,) | |
spk_query_emb: (B, 32, 512) | |
""" | |
cond = self.cond_ln(cond) | |
cond_input = cond.transpose(1, 2) | |
x_input = self.in_proj(x) | |
x_input = F.relu(x_input) | |
diffusion_step = self.diffusion_embedding(diffusion_step).to(x.dtype) | |
diffusion_step = self.mlp(diffusion_step) | |
skip = [] | |
for _, layer in enumerate(self.layers): | |
x_input, skip_connection = layer( | |
x_input, x_mask, cond_input, diffusion_step, spk_query_emb | |
) | |
skip.append(skip_connection) | |
x_input = torch.sum(torch.stack(skip), dim=0) / math.sqrt(self.num_layers) | |
x_out = self.skip_proj(x_input) | |
x_out = F.relu(x_out) | |
x_out = self.out_proj(x_out) # (B, 128, T) | |
return x_out | |