Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import librosa | |
import torch | |
import numpy as np | |
from numpy import linalg as LA | |
from torchmetrics import PearsonCorrCoef | |
def extract_energy_pearson_coeffcients( | |
audio_ref, | |
audio_deg, | |
n_fft=1024, | |
hop_length=256, | |
win_length=1024, | |
**kwargs, | |
): | |
"""Compute Energy Pearson Coefficients between the predicted and the ground truth audio. | |
audio_ref: path to the ground truth audio. | |
audio_deg: path to the predicted audio. | |
fs: sampling rate. | |
n_fft: fft size. | |
hop_length: hop length. | |
win_length: window length. | |
method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio. | |
"cut" will cut both audios into a same length according to the one with the shorter length. | |
db_scale: the ground truth and predicted audio will be converted to db_scale if "True". | |
""" | |
# Load hyperparameters | |
kwargs = kwargs["kwargs"] | |
fs = kwargs["fs"] | |
method = kwargs["method"] | |
db_scale = kwargs["db_scale"] | |
# Initialize method | |
pearson = PearsonCorrCoef() | |
# Load audio | |
if fs != None: | |
audio_ref, _ = librosa.load(audio_ref, sr=fs) | |
audio_deg, _ = librosa.load(audio_deg, sr=fs) | |
else: | |
audio_ref, fs = librosa.load(audio_ref) | |
audio_deg, fs = librosa.load(audio_deg) | |
# STFT | |
spec_ref = librosa.stft( | |
y=audio_ref, n_fft=n_fft, hop_length=hop_length, win_length=win_length | |
) | |
spec_deg = librosa.stft( | |
y=audio_deg, n_fft=n_fft, hop_length=hop_length, win_length=win_length | |
) | |
# Get magnitudes | |
mag_ref = np.abs(spec_ref).T | |
mag_deg = np.abs(spec_deg).T | |
# Convert spectrogram to energy | |
energy_ref = LA.norm(mag_ref, axis=1) | |
energy_deg = LA.norm(mag_deg, axis=1) | |
# Convert to db_scale | |
if db_scale: | |
energy_ref = 20 * np.log10(energy_ref) | |
energy_deg = 20 * np.log10(energy_deg) | |
# Audio length alignment | |
if method == "cut": | |
length = min(len(energy_ref), len(energy_deg)) | |
energy_ref = energy_ref[:length] | |
energy_deg = energy_deg[:length] | |
elif method == "dtw": | |
_, wp = librosa.sequence.dtw(energy_ref, energy_deg, backtrack=True) | |
energy_gt_new = [] | |
energy_pred_new = [] | |
for i in range(wp.shape[0]): | |
gt_index = wp[i][0] | |
pred_index = wp[i][1] | |
energy_gt_new.append(energy_ref[gt_index]) | |
energy_pred_new.append(energy_deg[pred_index]) | |
energy_ref = np.array(energy_gt_new) | |
energy_deg = np.array(energy_pred_new) | |
assert len(energy_ref) == len(energy_deg) | |
# Convert to tensor | |
energy_ref = torch.from_numpy(energy_ref) | |
energy_deg = torch.from_numpy(energy_deg) | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
energy_ref = energy_ref.to(device) | |
energy_deg = energy_deg.to(device) | |
pearson = pearson.to(device) | |
return pearson(energy_ref, energy_deg).detach().cpu().numpy().tolist() | |