Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torchcrepe | |
import math | |
import librosa | |
import torch | |
import numpy as np | |
def extract_f0_periodicity_rmse( | |
audio_ref, | |
audio_deg, | |
hop_length=256, | |
**kwargs, | |
): | |
"""Compute f0 periodicity Root Mean Square Error (RMSE) between the predicted and the ground truth audio. | |
audio_ref: path to the ground truth audio. | |
audio_deg: path to the predicted audio. | |
fs: sampling rate. | |
hop_length: hop length. | |
method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio. | |
"cut" will cut both audios into a same length according to the one with the shorter length. | |
""" | |
# Load hyperparameters | |
kwargs = kwargs["kwargs"] | |
fs = kwargs["fs"] | |
method = kwargs["method"] | |
# Load audio | |
if fs != None: | |
audio_ref, _ = librosa.load(audio_ref, sr=fs) | |
audio_deg, _ = librosa.load(audio_deg, sr=fs) | |
else: | |
audio_ref, fs = librosa.load(audio_ref) | |
audio_deg, fs = librosa.load(audio_deg) | |
# Convert to torch | |
audio_ref = torch.from_numpy(audio_ref).unsqueeze(0) | |
audio_deg = torch.from_numpy(audio_deg).unsqueeze(0) | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
# Get periodicity | |
_, periodicity_ref = torchcrepe.predict( | |
audio_ref, | |
sample_rate=fs, | |
hop_length=hop_length, | |
fmin=0, | |
fmax=1500, | |
model="full", | |
return_periodicity=True, | |
device=device, | |
) | |
_, periodicity_deg = torchcrepe.predict( | |
audio_deg, | |
sample_rate=fs, | |
hop_length=hop_length, | |
fmin=0, | |
fmax=1500, | |
model="full", | |
return_periodicity=True, | |
device=device, | |
) | |
# Cut silence | |
periodicity_ref = ( | |
torchcrepe.threshold.Silence()( | |
periodicity_ref, | |
audio_ref, | |
fs, | |
hop_length=hop_length, | |
) | |
.squeeze(0) | |
.numpy() | |
) | |
periodicity_deg = ( | |
torchcrepe.threshold.Silence()( | |
periodicity_deg, | |
audio_deg, | |
fs, | |
hop_length=hop_length, | |
) | |
.squeeze(0) | |
.numpy() | |
) | |
# Avoid silence audio | |
min_length = min(len(periodicity_ref), len(periodicity_deg)) | |
if min_length <= 1: | |
return 0 | |
# Periodicity length alignment | |
if method == "cut": | |
length = min(len(periodicity_ref), len(periodicity_deg)) | |
periodicity_ref = periodicity_ref[:length] | |
periodicity_deg = periodicity_deg[:length] | |
elif method == "dtw": | |
_, wp = librosa.sequence.dtw(periodicity_ref, periodicity_deg, backtrack=True) | |
periodicity_ref_new = [] | |
periodicity_deg_new = [] | |
for i in range(wp.shape[0]): | |
ref_index = wp[i][0] | |
deg_index = wp[i][1] | |
periodicity_ref_new.append(periodicity_ref[ref_index]) | |
periodicity_deg_new.append(periodicity_deg[deg_index]) | |
periodicity_ref = np.array(periodicity_ref_new) | |
periodicity_deg = np.array(periodicity_deg_new) | |
assert len(periodicity_ref) == len(periodicity_deg) | |
# Compute RMSE | |
periodicity_mse = np.square(np.subtract(periodicity_ref, periodicity_deg)).mean() | |
periodicity_rmse = math.sqrt(periodicity_mse) | |
return periodicity_rmse | |