Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
from models.tts.naturalspeech2.wavenet import WaveNet | |
class Diffusion(nn.Module): | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.diff_estimator = WaveNet(cfg.wavenet) | |
self.beta_min = cfg.beta_min | |
self.beta_max = cfg.beta_max | |
self.sigma = cfg.sigma | |
self.noise_factor = cfg.noise_factor | |
def forward(self, x, x_mask, cond, spk_query_emb, offset=1e-5): | |
""" | |
x: (B, 128, T) | |
x_mask: (B, T), mask is 0 | |
cond: (B, T, 512) | |
spk_query_emb: (B, 32, 512) | |
""" | |
diffusion_step = torch.rand( | |
x.shape[0], dtype=x.dtype, device=x.device, requires_grad=False | |
) | |
diffusion_step = torch.clamp(diffusion_step, offset, 1.0 - offset) | |
xt, z = self.forward_diffusion(x0=x, diffusion_step=diffusion_step) | |
cum_beta = self.get_cum_beta(diffusion_step.unsqueeze(-1).unsqueeze(-1)) | |
x0_pred = self.diff_estimator(xt, x_mask, cond, diffusion_step, spk_query_emb) | |
mean_pred = x0_pred * torch.exp(-0.5 * cum_beta / (self.sigma**2)) | |
variance = (self.sigma**2) * (1.0 - torch.exp(-cum_beta / (self.sigma**2))) | |
noise_pred = (xt - mean_pred) / (torch.sqrt(variance) * self.noise_factor) | |
noise = z | |
diff_out = {"x0_pred": x0_pred, "noise_pred": noise_pred, "noise": noise} | |
return diff_out | |
def get_cum_beta(self, time_step): | |
return self.beta_min * time_step + 0.5 * (self.beta_max - self.beta_min) * ( | |
time_step**2 | |
) | |
def get_beta_t(self, time_step): | |
return self.beta_min + (self.beta_max - self.beta_min) * time_step | |
def forward_diffusion(self, x0, diffusion_step): | |
""" | |
x0: (B, 128, T) | |
time_step: (B,) | |
""" | |
time_step = diffusion_step.unsqueeze(-1).unsqueeze(-1) | |
cum_beta = self.get_cum_beta(time_step) | |
mean = x0 * torch.exp(-0.5 * cum_beta / (self.sigma**2)) | |
variance = (self.sigma**2) * (1 - torch.exp(-cum_beta / (self.sigma**2))) | |
z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device, requires_grad=False) | |
xt = mean + z * torch.sqrt(variance) * self.noise_factor | |
return xt, z | |
def cal_dxt(self, xt, x_mask, cond, spk_query_emb, diffusion_step, h): | |
time_step = diffusion_step.unsqueeze(-1).unsqueeze(-1) | |
cum_beta = self.get_cum_beta(time_step=time_step) | |
beta_t = self.get_beta_t(time_step=time_step) | |
x0_pred = self.diff_estimator(xt, x_mask, cond, diffusion_step, spk_query_emb) | |
mean_pred = x0_pred * torch.exp(-0.5 * cum_beta / (self.sigma**2)) | |
noise_pred = xt - mean_pred | |
variance = (self.sigma**2) * (1.0 - torch.exp(-cum_beta / (self.sigma**2))) | |
logp = -noise_pred / (variance + 1e-8) | |
dxt = -0.5 * h * beta_t * (logp + xt / (self.sigma**2)) | |
return dxt | |
def reverse_diffusion(self, z, x_mask, cond, n_timesteps, spk_query_emb): | |
h = 1.0 / max(n_timesteps, 1) | |
xt = z | |
for i in range(n_timesteps): | |
t = (1.0 - (i + 0.5) * h) * torch.ones( | |
z.shape[0], dtype=z.dtype, device=z.device | |
) | |
dxt = self.cal_dxt(xt, x_mask, cond, spk_query_emb, diffusion_step=t, h=h) | |
xt_ = xt - dxt | |
if self.cfg.ode_solver == "midpoint": | |
x_mid = 0.5 * (xt_ + xt) | |
dxt = self.cal_dxt( | |
x_mid, x_mask, cond, spk_query_emb, diffusion_step=t + 0.5 * h, h=h | |
) | |
xt = xt - dxt | |
elif self.cfg.ode_solver == "euler": | |
xt = xt_ | |
return xt | |
def reverse_diffusion_from_t( | |
self, z, x_mask, cond, n_timesteps, spk_query_emb, t_start | |
): | |
h = t_start / max(n_timesteps, 1) | |
xt = z | |
for i in range(n_timesteps): | |
t = (t_start - (i + 0.5) * h) * torch.ones( | |
z.shape[0], dtype=z.dtype, device=z.device | |
) | |
dxt = self.cal_dxt(xt, x_mask, cond, spk_query_emb, diffusion_step=t, h=h) | |
xt_ = xt - dxt | |
if self.cfg.ode_solver == "midpoint": | |
x_mid = 0.5 * (xt_ + xt) | |
dxt = self.cal_dxt( | |
x_mid, x_mask, cond, spk_query_emb, diffusion_step=t + 0.5 * h, h=h | |
) | |
xt = xt - dxt | |
elif self.cfg.ode_solver == "euler": | |
xt = xt_ | |
return xt | |