Spaces:
Running
Running
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This code is modified from https://github.com/facebookresearch/encodec/blob/main/encodec/modules/conv.py | |
"""Convolutional layers wrappers and utilities.""" | |
import math | |
import typing as tp | |
import warnings | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn.utils import spectral_norm, weight_norm | |
import typing as tp | |
import einops | |
class ConvLayerNorm(nn.LayerNorm): | |
""" | |
Convolution-friendly LayerNorm that moves channels to last dimensions | |
before running the normalization and moves them back to original position right after. | |
""" | |
def __init__( | |
self, normalized_shape: tp.Union[int, tp.List[int], torch.Size], **kwargs | |
): | |
super().__init__(normalized_shape, **kwargs) | |
def forward(self, x): | |
x = einops.rearrange(x, "b ... t -> b t ...") | |
x = super().forward(x) | |
x = einops.rearrange(x, "b t ... -> b ... t") | |
return | |
CONV_NORMALIZATIONS = frozenset( | |
[ | |
"none", | |
"weight_norm", | |
"spectral_norm", | |
"time_layer_norm", | |
"layer_norm", | |
"time_group_norm", | |
] | |
) | |
def apply_parametrization_norm(module: nn.Module, norm: str = "none") -> nn.Module: | |
assert norm in CONV_NORMALIZATIONS | |
if norm == "weight_norm": | |
return weight_norm(module) | |
elif norm == "spectral_norm": | |
return spectral_norm(module) | |
else: | |
# We already check was in CONV_NORMALIZATION, so any other choice | |
# doesn't need reparametrization. | |
return module | |
def get_norm_module( | |
module: nn.Module, causal: bool = False, norm: str = "none", **norm_kwargs | |
) -> nn.Module: | |
"""Return the proper normalization module. If causal is True, this will ensure the returned | |
module is causal, or return an error if the normalization doesn't support causal evaluation. | |
""" | |
assert norm in CONV_NORMALIZATIONS | |
if norm == "layer_norm": | |
assert isinstance(module, nn.modules.conv._ConvNd) | |
return ConvLayerNorm(module.out_channels, **norm_kwargs) | |
elif norm == "time_group_norm": | |
if causal: | |
raise ValueError("GroupNorm doesn't support causal evaluation.") | |
assert isinstance(module, nn.modules.conv._ConvNd) | |
return nn.GroupNorm(1, module.out_channels, **norm_kwargs) | |
else: | |
return nn.Identity() | |
def get_extra_padding_for_conv1d( | |
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 | |
) -> int: | |
"""See `pad_for_conv1d`.""" | |
length = x.shape[-1] | |
n_frames = (length - kernel_size + padding_total) / stride + 1 | |
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) | |
return ideal_length - length | |
def pad_for_conv1d( | |
x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0 | |
): | |
"""Pad for a convolution to make sure that the last window is full. | |
Extra padding is added at the end. This is required to ensure that we can rebuild | |
an output of the same length, as otherwise, even with padding, some time steps | |
might get removed. | |
For instance, with total padding = 4, kernel size = 4, stride = 2: | |
0 0 1 2 3 4 5 0 0 # (0s are padding) | |
1 2 3 # (output frames of a convolution, last 0 is never used) | |
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding) | |
1 2 3 4 # once you removed padding, we are missing one time step ! | |
""" | |
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) | |
return F.pad(x, (0, extra_padding)) | |
def pad1d( | |
x: torch.Tensor, | |
paddings: tp.Tuple[int, int], | |
mode: str = "zero", | |
value: float = 0.0, | |
): | |
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input. | |
If this is the case, we insert extra 0 padding to the right before the reflection happen. | |
""" | |
length = x.shape[-1] | |
padding_left, padding_right = paddings | |
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
if mode == "reflect": | |
max_pad = max(padding_left, padding_right) | |
extra_pad = 0 | |
if length <= max_pad: | |
extra_pad = max_pad - length + 1 | |
x = F.pad(x, (0, extra_pad)) | |
padded = F.pad(x, paddings, mode, value) | |
end = padded.shape[-1] - extra_pad | |
return padded[..., :end] | |
else: | |
return F.pad(x, paddings, mode, value) | |
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]): | |
"""Remove padding from x, handling properly zero padding. Only for 1d!""" | |
padding_left, padding_right = paddings | |
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) | |
assert (padding_left + padding_right) <= x.shape[-1] | |
end = x.shape[-1] - padding_right | |
return x[..., padding_left:end] | |
class NormConv1d(nn.Module): | |
"""Wrapper around Conv1d and normalization applied to this conv | |
to provide a uniform interface across normalization approaches. | |
""" | |
def __init__( | |
self, | |
*args, | |
causal: bool = False, | |
norm: str = "none", | |
norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
**kwargs, | |
): | |
super().__init__() | |
self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm) | |
self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs) | |
self.norm_type = norm | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.norm(x) | |
return x | |
class NormConv2d(nn.Module): | |
"""Wrapper around Conv2d and normalization applied to this conv | |
to provide a uniform interface across normalization approaches. | |
""" | |
def __init__( | |
self, | |
*args, | |
norm: str = "none", | |
norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
**kwargs, | |
): | |
super().__init__() | |
self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm) | |
self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs) | |
self.norm_type = norm | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.norm(x) | |
return x | |
class NormConvTranspose1d(nn.Module): | |
"""Wrapper around ConvTranspose1d and normalization applied to this conv | |
to provide a uniform interface across normalization approaches. | |
""" | |
def __init__( | |
self, | |
*args, | |
causal: bool = False, | |
norm: str = "none", | |
norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
**kwargs, | |
): | |
super().__init__() | |
self.convtr = apply_parametrization_norm( | |
nn.ConvTranspose1d(*args, **kwargs), norm | |
) | |
self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs) | |
self.norm_type = norm | |
def forward(self, x): | |
x = self.convtr(x) | |
x = self.norm(x) | |
return x | |
class NormConvTranspose2d(nn.Module): | |
"""Wrapper around ConvTranspose2d and normalization applied to this conv | |
to provide a uniform interface across normalization approaches. | |
""" | |
def __init__( | |
self, | |
*args, | |
norm: str = "none", | |
norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
**kwargs, | |
): | |
super().__init__() | |
self.convtr = apply_parametrization_norm( | |
nn.ConvTranspose2d(*args, **kwargs), norm | |
) | |
self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs) | |
def forward(self, x): | |
x = self.convtr(x) | |
x = self.norm(x) | |
return x | |
class SConv1d(nn.Module): | |
"""Conv1d with some builtin handling of asymmetric or causal padding | |
and normalization. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int = 1, | |
dilation: int = 1, | |
groups: int = 1, | |
bias: bool = True, | |
causal: bool = False, | |
norm: str = "none", | |
norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
pad_mode: str = "reflect", | |
**kwargs, | |
): | |
super().__init__() | |
# warn user on unusual setup between dilation and stride | |
if stride > 1 and dilation > 1: | |
warnings.warn( | |
"SConv1d has been initialized with stride > 1 and dilation > 1" | |
f" (kernel_size={kernel_size} stride={stride}, dilation={dilation})." | |
) | |
self.conv = NormConv1d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
causal=causal, | |
norm=norm, | |
norm_kwargs=norm_kwargs, | |
) | |
self.causal = causal | |
self.pad_mode = pad_mode | |
def forward(self, x): | |
B, C, T = x.shape | |
kernel_size = self.conv.conv.kernel_size[0] | |
stride = self.conv.conv.stride[0] | |
dilation = self.conv.conv.dilation[0] | |
kernel_size = ( | |
kernel_size - 1 | |
) * dilation + 1 # effective kernel size with dilations | |
padding_total = kernel_size - stride | |
extra_padding = get_extra_padding_for_conv1d( | |
x, kernel_size, stride, padding_total | |
) | |
if self.causal: | |
# Left padding for causal | |
x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode) | |
else: | |
# Asymmetric padding required for odd strides | |
padding_right = padding_total // 2 | |
padding_left = padding_total - padding_right | |
x = pad1d( | |
x, (padding_left, padding_right + extra_padding), mode=self.pad_mode | |
) | |
return self.conv(x) | |
class SConvTranspose1d(nn.Module): | |
"""ConvTranspose1d with some builtin handling of asymmetric or causal padding | |
and normalization. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride: int = 1, | |
causal: bool = False, | |
norm: str = "none", | |
trim_right_ratio: float = 1.0, | |
norm_kwargs: tp.Dict[str, tp.Any] = {}, | |
**kwargs, | |
): | |
super().__init__() | |
self.convtr = NormConvTranspose1d( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
causal=causal, | |
norm=norm, | |
norm_kwargs=norm_kwargs, | |
) | |
self.causal = causal | |
self.trim_right_ratio = trim_right_ratio | |
assert ( | |
self.causal or self.trim_right_ratio == 1.0 | |
), "`trim_right_ratio` != 1.0 only makes sense for causal convolutions" | |
assert self.trim_right_ratio >= 0.0 and self.trim_right_ratio <= 1.0 | |
def forward(self, x): | |
kernel_size = self.convtr.convtr.kernel_size[0] | |
stride = self.convtr.convtr.stride[0] | |
padding_total = kernel_size - stride | |
y = self.convtr(x) | |
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be | |
# removed at the very end, when keeping only the right length for the output, | |
# as removing it here would require also passing the length at the matching layer | |
# in the encoder. | |
if self.causal: | |
# Trim the padding on the right according to the specified ratio | |
# if trim_right_ratio = 1.0, trim everything from right | |
padding_right = math.ceil(padding_total * self.trim_right_ratio) | |
padding_left = padding_total - padding_right | |
y = unpad1d(y, (padding_left, padding_right)) | |
else: | |
# Asymmetric padding required for odd strides | |
padding_right = padding_total // 2 | |
padding_left = padding_total - padding_right | |
y = unpad1d(y, (padding_left, padding_right)) | |
return y | |
class SLSTM(nn.Module): | |
""" | |
LSTM without worrying about the hidden state, nor the layout of the data. | |
Expects input as convolutional layout. | |
""" | |
def __init__(self, dimension: int, num_layers: int = 2, skip: bool = True): | |
super().__init__() | |
self.skip = skip | |
self.lstm = nn.LSTM(dimension, dimension, num_layers) | |
self.hidden = None | |
def forward(self, x): | |
x = x.permute(2, 0, 1) | |
if self.training: | |
y, _ = self.lstm(x) | |
else: | |
y, self.hidden = self.lstm(x, self.hidden) | |
if self.skip: | |
y = y + x | |
y = y.permute(1, 2, 0) | |
return y | |