# This module is from [WeNet](https://github.com/wenet-e2e/wenet). # ## Citations # ```bibtex # @inproceedings{yao2021wenet, # title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, # author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, # booktitle={Proc. Interspeech}, # year={2021}, # address={Brno, Czech Republic }, # organization={IEEE} # } # @article{zhang2022wenet, # title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, # author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, # journal={arXiv preprint arXiv:2203.15455}, # year={2022} # } # from itertools import chain from typing import Any from typing import Dict from typing import List from typing import Tuple from typing import Union from typing import NamedTuple import torch from modules.wenet_extractor.paraformer.utils import end_detect from modules.wenet_extractor.paraformer.search.ctc import CTCPrefixScorer from modules.wenet_extractor.paraformer.search.scorer_interface import ( ScorerInterface, PartialScorerInterface, ) class Hypothesis(NamedTuple): """Hypothesis data type.""" yseq: torch.Tensor score: Union[float, torch.Tensor] = 0 scores: Dict[str, Union[float, torch.Tensor]] = dict() states: Dict[str, Any] = dict() def asdict(self) -> dict: """Convert data to JSON-friendly dict.""" return self._replace( yseq=self.yseq.tolist(), score=float(self.score), scores={k: float(v) for k, v in self.scores.items()}, )._asdict() class BeamSearchCIF(torch.nn.Module): """Beam search implementation.""" def __init__( self, scorers: Dict[str, ScorerInterface], weights: Dict[str, float], beam_size: int, vocab_size: int, sos: int, eos: int, pre_beam_ratio: float = 1.5, pre_beam_score_key: str = None, ): """Initialize beam search. Args: scorers (dict[str, ScorerInterface]): Dict of decoder modules e.g., Decoder, CTCPrefixScorer, LM The scorer will be ignored if it is `None` weights (dict[str, float]): Dict of weights for each scorers The scorer will be ignored if its weight is 0 beam_size (int): The number of hypotheses kept during search vocab_size (int): The number of vocabulary sos (int): Start of sequence id eos (int): End of sequence id pre_beam_score_key (str): key of scores to perform pre-beam search pre_beam_ratio (float): beam size in the pre-beam search will be `int(pre_beam_ratio * beam_size)` """ super().__init__() # set scorers self.weights = weights self.scorers = dict() self.full_scorers = dict() self.part_scorers = dict() # this module dict is required for recursive cast # `self.to(device, dtype)` in `recog.py` self.nn_dict = torch.nn.ModuleDict() for k, v in scorers.items(): w = weights.get(k, 0) if w == 0 or v is None: continue assert isinstance( v, ScorerInterface ), f"{k} ({type(v)}) does not implement ScorerInterface" self.scorers[k] = v if isinstance(v, PartialScorerInterface): self.part_scorers[k] = v else: self.full_scorers[k] = v if isinstance(v, torch.nn.Module): self.nn_dict[k] = v # set configurations self.sos = sos self.eos = eos self.pre_beam_size = int(pre_beam_ratio * beam_size) self.beam_size = beam_size self.n_vocab = vocab_size if ( pre_beam_score_key is not None and pre_beam_score_key != "full" and pre_beam_score_key not in self.full_scorers ): raise KeyError( f"{pre_beam_score_key} is not found in " f"{self.full_scorers}" ) self.pre_beam_score_key = pre_beam_score_key self.do_pre_beam = ( self.pre_beam_score_key is not None and self.pre_beam_size < self.n_vocab and len(self.part_scorers) > 0 ) def init_hyp(self, x: torch.Tensor) -> List[Hypothesis]: """Get an initial hypothesis data. Args: x (torch.Tensor): The encoder output feature Returns: Hypothesis: The initial hypothesis. """ init_states = dict() init_scores = dict() for k, d in self.scorers.items(): init_states[k] = d.init_state(x) init_scores[k] = 0.0 return [ Hypothesis( score=0.0, scores=init_scores, states=init_states, yseq=torch.tensor([self.sos], device=x.device), ) ] @staticmethod def append_token(xs: torch.Tensor, x: int) -> torch.Tensor: """Append new token to prefix tokens. Args: xs (torch.Tensor): The prefix token x (int): The new token to append Returns: torch.Tensor: New tensor contains: xs + [x] with xs.dtype and xs.device """ x = torch.tensor([x], dtype=xs.dtype, device=xs.device) return torch.cat((xs, x)) def score_full( self, hyp: Hypothesis, x: torch.Tensor ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: """Score new hypothesis by `self.full_scorers`. Args: hyp (Hypothesis): Hypothesis with prefix tokens to score x (torch.Tensor): Corresponding input feature Returns: Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of score dict of `hyp` that has string keys of `self.full_scorers` and tensor score values of shape: `(self.n_vocab,)`, and state dict that has string keys and state values of `self.full_scorers` """ scores = dict() states = dict() for k, d in self.full_scorers.items(): scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x) return scores, states def score_partial( self, hyp: Hypothesis, ids: torch.Tensor, x: torch.Tensor ) -> Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: """Score new hypothesis by `self.part_scorers`. Args: hyp (Hypothesis): Hypothesis with prefix tokens to score ids (torch.Tensor): 1D tensor of new partial tokens to score x (torch.Tensor): Corresponding input feature Returns: Tuple[Dict[str, torch.Tensor], Dict[str, Any]]: Tuple of score dict of `hyp` that has string keys of `self.part_scorers` and tensor score values of shape: `(len(ids),)`, and state dict that has string keys and state values of `self.part_scorers` """ scores = dict() states = dict() for k, d in self.part_scorers.items(): scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k], x) return scores, states def beam( self, weighted_scores: torch.Tensor, ids: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Compute topk full token ids and partial token ids. Args: weighted_scores (torch.Tensor): The weighted sum scores for each tokens. Its shape is `(self.n_vocab,)`. ids (torch.Tensor): The partial token ids to compute topk Returns: Tuple[torch.Tensor, torch.Tensor]: The topk full token ids and partial token ids. Their shapes are `(self.beam_size,)` """ # no pre beam performed if weighted_scores.size(0) == ids.size(0): top_ids = weighted_scores.topk(self.beam_size)[1] return top_ids, top_ids # mask pruned in pre-beam not to select in topk tmp = weighted_scores[ids] weighted_scores[:] = -float("inf") weighted_scores[ids] = tmp top_ids = weighted_scores.topk(self.beam_size)[1] local_ids = weighted_scores[ids].topk(self.beam_size)[1] return top_ids, local_ids @staticmethod def merge_scores( prev_scores: Dict[str, float], next_full_scores: Dict[str, torch.Tensor], full_idx: int, next_part_scores: Dict[str, torch.Tensor], part_idx: int, ) -> Dict[str, torch.Tensor]: """Merge scores for new hypothesis. Args: prev_scores (Dict[str, float]): The previous hypothesis scores by `self.scorers` next_full_scores (Dict[str, torch.Tensor]): scores by `self.full_scorers` full_idx (int): The next token id for `next_full_scores` next_part_scores (Dict[str, torch.Tensor]): scores of partial tokens by `self.part_scorers` part_idx (int): The new token id for `next_part_scores` Returns: Dict[str, torch.Tensor]: The new score dict. Its keys are names of `self.full_scorers` and `self.part_scorers`. Its values are scalar tensors by the scorers. """ new_scores = dict() for k, v in next_full_scores.items(): new_scores[k] = prev_scores[k] + v[full_idx] for k, v in next_part_scores.items(): new_scores[k] = prev_scores[k] + v[part_idx] return new_scores def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any: """Merge states for new hypothesis. Args: states: states of `self.full_scorers` part_states: states of `self.part_scorers` part_idx (int): The new token id for `part_scores` Returns: Dict[str, torch.Tensor]: The new score dict. Its keys are names of `self.full_scorers` and `self.part_scorers`. Its values are states of the scorers. """ new_states = dict() for k, v in states.items(): new_states[k] = v for k, d in self.part_scorers.items(): new_states[k] = d.select_state(part_states[k], part_idx) return new_states def search( self, running_hyps: List[Hypothesis], x: torch.Tensor, am_score: torch.Tensor ) -> List[Hypothesis]: """Search new tokens for running hypotheses and encoded speech x. Args: running_hyps (List[Hypothesis]): Running hypotheses on beam x (torch.Tensor): Encoded speech feature (T, D) Returns: List[Hypotheses]: Best sorted hypotheses """ best_hyps = [] part_ids = torch.arange(self.n_vocab, device=x.device) # no pre-beam for hyp in running_hyps: # scoring weighted_scores = torch.zeros(self.n_vocab, dtype=x.dtype, device=x.device) weighted_scores += am_score scores, states = self.score_full(hyp, x) for k in self.full_scorers: weighted_scores += self.weights[k] * scores[k] # partial scoring if self.do_pre_beam: pre_beam_scores = ( weighted_scores if self.pre_beam_score_key == "full" else scores[self.pre_beam_score_key] ) part_ids = torch.topk(pre_beam_scores, self.pre_beam_size)[1] part_scores, part_states = self.score_partial(hyp, part_ids, x) for k in self.part_scorers: weighted_scores[part_ids] += self.weights[k] * part_scores[k] # add previous hyp score weighted_scores += hyp.score # update hyps for j, part_j in zip(*self.beam(weighted_scores, part_ids)): # will be (2 x beam at most) best_hyps.append( Hypothesis( score=weighted_scores[j], yseq=self.append_token(hyp.yseq, j), scores=self.merge_scores( hyp.scores, scores, j, part_scores, part_j ), states=self.merge_states(states, part_states, part_j), ) ) # sort and prune 2 x beam -> beam best_hyps = sorted(best_hyps, key=lambda x: x.score, reverse=True)[ : min(len(best_hyps), self.beam_size) ] return best_hyps def forward( self, x: torch.Tensor, am_scores: torch.Tensor, maxlenratio: float = 0.0, minlenratio: float = 0.0, ) -> List[Hypothesis]: """Perform beam search. Args: x (torch.Tensor): Encoded speech feature (T, D) maxlenratio (float): Input length ratio to obtain max output length. If maxlenratio=0.0 (default), it uses a end-detect function to automatically find maximum hypothesis lengths If maxlenratio<0.0, its absolute value is interpreted as a constant max output length. minlenratio (float): Input length ratio to obtain min output length. Returns: list[Hypothesis]: N-best decoding results """ # set length bounds maxlen = am_scores.shape[0] # main loop of prefix search running_hyps = self.init_hyp(x) ended_hyps = [] for i in range(maxlen): best = self.search(running_hyps, x, am_scores[i]) # post process of one iteration running_hyps = self.post_process(i, maxlen, maxlenratio, best, ended_hyps) # end detection if maxlenratio == 0.0 and end_detect([h.asdict() for h in ended_hyps], i): break nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True) # check the number of hypotheses reaching to eos if len(nbest_hyps) == 0: return ( [] if minlenratio < 0.1 else self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1)) ) best = nbest_hyps[0] return nbest_hyps def post_process( self, i: int, maxlen: int, maxlenratio: float, running_hyps: List[Hypothesis], ended_hyps: List[Hypothesis], ) -> List[Hypothesis]: """Perform post-processing of beam search iterations. Args: i (int): The length of hypothesis tokens. maxlen (int): The maximum length of tokens in beam search. maxlenratio (int): The maximum length ratio in beam search. running_hyps (List[Hypothesis]): The running hypotheses in beam search. ended_hyps (List[Hypothesis]): The ended hypotheses in beam search. Returns: List[Hypothesis]: The new running hypotheses. """ # add eos in the final loop to avoid that there are no ended hyps if i == maxlen - 1: # logging.info("adding in the last position in the loop") running_hyps = [ h._replace(yseq=self.append_token(h.yseq, self.eos)) for h in running_hyps ] # add ended hypotheses to a final list, and removed them from current # hypotheses # (this will be a problem, number of hyps < beam) remained_hyps = [] for hyp in running_hyps: if hyp.yseq[-1] == self.eos: # e.g., Word LM needs to add final score for k, d in chain(self.full_scorers.items(), self.part_scorers.items()): s = d.final_score(hyp.states[k]) hyp.scores[k] += s hyp = hyp._replace(score=hyp.score + self.weights[k] * s) ended_hyps.append(hyp) else: remained_hyps.append(hyp) return remained_hyps def build_beam_search(model, args, device): scorers = {} if model.ctc is not None: ctc = CTCPrefixScorer(ctc=model.ctc, eos=model.eos) scorers.update(ctc=ctc) weights = dict( decoder=1.0 - args.ctc_weight, ctc=args.ctc_weight, length_bonus=args.penalty, ) beam_search = BeamSearchCIF( beam_size=args.beam_size, weights=weights, scorers=scorers, sos=model.sos, eos=model.eos, vocab_size=model.vocab_size, pre_beam_score_key=None if args.ctc_weight == 1.0 else "full", ) beam_search.to(device=device, dtype=torch.float32).eval() return beam_search