Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ import numpy as np
|
|
11 |
import os
|
12 |
import tempfile
|
13 |
import uuid
|
|
|
14 |
|
15 |
torch.set_float32_matmul_precision("highest")
|
16 |
|
@@ -28,6 +29,31 @@ transform_image = transforms.Compose(
|
|
28 |
|
29 |
BATCH_SIZE = 3
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@spaces.GPU
|
32 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
33 |
try:
|
@@ -35,7 +61,7 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
|
|
35 |
if fps == 0:
|
36 |
fps = video.fps
|
37 |
audio = video.audio
|
38 |
-
frames = video.iter_frames(fps=fps)
|
39 |
processed_frames = []
|
40 |
yield gr.update(visible=True), gr.update(visible=False)
|
41 |
|
@@ -52,40 +78,22 @@ def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=
|
|
52 |
|
53 |
bg_frame_index = 0
|
54 |
frame_batch = []
|
|
|
|
|
55 |
|
56 |
for i, frame in enumerate(frames):
|
57 |
frame_batch.append(frame)
|
58 |
-
if len(frame_batch) == BATCH_SIZE or i ==
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
processed_images = [process(img, color) for img in pil_images]
|
64 |
-
elif bg_type == "Image":
|
65 |
-
processed_images = [process(img, bg_image) for img in pil_images]
|
66 |
-
elif bg_type == "Video":
|
67 |
-
processed_images = []
|
68 |
-
for _ in range(len(frame_batch)):
|
69 |
-
if video_handling == "slow_down":
|
70 |
-
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
71 |
-
bg_frame_index += 1
|
72 |
-
background_image = Image.fromarray(background_frame)
|
73 |
-
else: # video_handling == "loop"
|
74 |
-
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
75 |
-
bg_frame_index += 1
|
76 |
-
background_image = Image.fromarray(background_frame)
|
77 |
-
|
78 |
-
processed_images.append(process(pil_images[_],background_image))
|
79 |
-
|
80 |
-
|
81 |
-
else:
|
82 |
-
processed_images = pil_images
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
yield processed_image, None
|
87 |
-
frame_batch = [] # Clear the batch
|
88 |
|
|
|
|
|
89 |
|
90 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
91 |
processed_video = processed_video.set_audio(audio)
|
|
|
11 |
import os
|
12 |
import tempfile
|
13 |
import uuid
|
14 |
+
import threading
|
15 |
|
16 |
torch.set_float32_matmul_precision("highest")
|
17 |
|
|
|
29 |
|
30 |
BATCH_SIZE = 3
|
31 |
|
32 |
+
def process_batch(frame_batch, bg_type, bg_image, bg_video, color, fps, video_handling, bg_frame_index, background_frames):
|
33 |
+
pil_images = [Image.fromarray(f) for f in frame_batch]
|
34 |
+
processed_images = []
|
35 |
+
|
36 |
+
if bg_type == "Color":
|
37 |
+
processed_images = [process(img, color) for img in pil_images]
|
38 |
+
elif bg_type == "Image":
|
39 |
+
processed_images = [process(img, bg_image) for img in pil_images]
|
40 |
+
elif bg_type == "Video":
|
41 |
+
for _ in range(len(frame_batch)):
|
42 |
+
if video_handling == "slow_down":
|
43 |
+
background_frame = background_frames[int(bg_frame_index)]
|
44 |
+
bg_frame_index += len(background_frames) / (len(frame_batch) * (len(background_frames) / (fps*mp.VideoFileClip(bg_video).duration)))
|
45 |
+
background_image = Image.fromarray(background_frame)
|
46 |
+
else: # video_handling == "loop"
|
47 |
+
background_frame = background_frames[bg_frame_index % len(background_frames)]
|
48 |
+
bg_frame_index += 1
|
49 |
+
background_image = Image.fromarray(background_frame)
|
50 |
+
|
51 |
+
processed_images.append(process(pil_images[_], background_image))
|
52 |
+
else:
|
53 |
+
processed_images = pil_images
|
54 |
+
|
55 |
+
return processed_images, bg_frame_index
|
56 |
+
|
57 |
@spaces.GPU
|
58 |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
|
59 |
try:
|
|
|
61 |
if fps == 0:
|
62 |
fps = video.fps
|
63 |
audio = video.audio
|
64 |
+
frames = list(video.iter_frames(fps=fps))
|
65 |
processed_frames = []
|
66 |
yield gr.update(visible=True), gr.update(visible=False)
|
67 |
|
|
|
78 |
|
79 |
bg_frame_index = 0
|
80 |
frame_batch = []
|
81 |
+
threads = []
|
82 |
+
|
83 |
|
84 |
for i, frame in enumerate(frames):
|
85 |
frame_batch.append(frame)
|
86 |
+
if len(frame_batch) == BATCH_SIZE or i == len(frames) - 1: # Process batch or last frames
|
87 |
+
thread = threading.Thread(target=lambda : processed_frames.extend(process_batch(frame_batch, bg_type, bg_image, bg_video, color, fps, video_handling, bg_frame_index, background_frames)[0]))
|
88 |
+
threads.append(thread)
|
89 |
+
thread.start()
|
90 |
+
frame_batch = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
for thread in threads:
|
93 |
+
thread.join()
|
|
|
|
|
94 |
|
95 |
+
for processed_image in processed_frames:
|
96 |
+
yield processed_image, None
|
97 |
|
98 |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
|
99 |
processed_video = processed_video.set_audio(audio)
|