import gradio as gr from loadimg import load_img #import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms import moviepy.editor as mp from pydub import AudioSegment from PIL import Image import numpy as np import os import tempfile import uuid import devicetorch torch.set_float32_matmul_precision("medium") device = devicetorch.get(torch) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to(device) transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) #@spaces.GPU def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"): try: # Load the video using moviepy video = mp.VideoFileClip(vid) # Load original fps if fps value is equal to 0 if fps == 0: fps = video.fps # Extract audio from the video audio = video.audio # Extract frames at the specified FPS frames = video.iter_frames(fps=fps) # Process each frame for background removal processed_frames = [] # yield gr.update(visible=True), gr.update(visible=False) if bg_type == "Video": background_video = mp.VideoFileClip(bg_video) if background_video.duration < video.duration: if video_handling == "slow_down": background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration) else: # video_handling == "loop" background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1)) background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list else: background_frames = None bg_frame_index = 0 # Initialize background frame index for i, frame in enumerate(frames): pil_image = Image.fromarray(frame) if bg_type == "Color": processed_image = process(pil_image, color) elif bg_type == "Image": processed_image = process(pil_image, bg_image) elif bg_type == "Video": if video_handling == "slow_down": background_frame = background_frames[bg_frame_index % len(background_frames)] bg_frame_index += 1 background_image = Image.fromarray(background_frame) processed_image = process(pil_image, background_image) else: # video_handling == "loop" background_frame = background_frames[bg_frame_index % len(background_frames)] bg_frame_index += 1 background_image = Image.fromarray(background_frame) processed_image = process(pil_image, background_image) else: processed_image = pil_image # Default to original image if no background is selected processed_frames.append(np.array(processed_image)) # yield processed_image, None # Create a new video from the processed frames processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) # Add the original audio back to the processed video processed_video = processed_video.set_audio(audio) # Save the processed video to a temporary file temp_dir = "temp" os.makedirs(temp_dir, exist_ok=True) unique_filename = str(uuid.uuid4()) + ".mp4" temp_filepath = os.path.join(temp_dir, unique_filename) processed_video.write_videofile(temp_filepath, codec="libx264") # yield gr.update(visible=False), gr.update(visible=True) # Return the path to the temporary file # yield processed_image, temp_filepath return processed_image, temp_filepath except Exception as e: print(f"Error: {e}") # yield gr.update(visible=False), gr.update(visible=True) #yield None, f"Error processing video: {e}" return None, f"Error processing video: {e}" def process(image, bg): image_size = image.size input_images = transform_image(image).unsqueeze(0).to(device) # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) if isinstance(bg, str) and bg.startswith("#"): color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) background = Image.new("RGBA", image_size, color_rgb + (255,)) elif isinstance(bg, Image.Image): background = bg.convert("RGBA").resize(image_size) else: background = Image.open(bg).convert("RGBA").resize(image_size) # Composite the image onto the background using the mask image = Image.composite(image, background, mask) return image with gr.Blocks(theme=gr.themes.Ocean()) as demo: gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.") with gr.Row(): in_video = gr.Video(label="Input Video", interactive=True) stream_image = gr.Image(label="Streaming Output", visible=False) out_video = gr.Video(label="Final Output Video") submit_button = gr.Button("Change Background", interactive=True) with gr.Row(): fps_slider = gr.Slider( minimum=0, maximum=60, step=1, value=0, label="Output FPS (0 will inherit the original fps value)", interactive=True ) bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) bg_video = gr.Video(label="Background Video", visible=False, interactive=True) with gr.Column(visible=False) as video_handling_options: video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) def update_visibility(bg_type): if bg_type == "Color": return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) elif bg_type == "Image": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) elif bg_type == "Video": return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) examples = gr.Examples( [ ["rickroll-2sec.mp4", "Video", None, "background.mp4"], ["rickroll-2sec.mp4", "Image", "images.webp", None], ["rickroll-2sec.mp4", "Color", None, None], ], inputs=[in_video, bg_type, bg_image, bg_video], outputs=[stream_image, out_video], fn=fn, cache_examples=True, cache_mode="eager", ) submit_button.click( fn, inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio], outputs=[stream_image, out_video], ) if __name__ == "__main__": demo.launch(show_error=True)