Spaces:
Sleeping
Sleeping
update
Browse files- tasks/text.py +19 -48
tasks/text.py
CHANGED
@@ -5,7 +5,7 @@ from sklearn.metrics import accuracy_score
|
|
5 |
import random
|
6 |
from torch.utils.data import DataLoader
|
7 |
|
8 |
-
from transformers import AutoTokenizer,
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
@@ -24,9 +24,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
24 |
"""
|
25 |
Evaluate text classification for climate disinformation detection.
|
26 |
|
27 |
-
Current Model:
|
28 |
-
-
|
29 |
-
- Used as a baseline for comparison
|
30 |
"""
|
31 |
# Get space info
|
32 |
username, space_url = get_space_info()
|
@@ -52,9 +51,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
52 |
# Split dataset
|
53 |
train_test = dataset["train"]
|
54 |
test_dataset = dataset["test"]
|
55 |
-
|
56 |
-
print(test_dataset['quote'])
|
57 |
-
test_dataset = test_dataset['quote']
|
58 |
# Start tracking emissions
|
59 |
tracker.start()
|
60 |
tracker.start_task("inference")
|
@@ -69,74 +66,48 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
69 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
70 |
model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
|
71 |
|
72 |
-
|
73 |
-
# def tokenize_frugal(batch, tokenizer):
|
74 |
-
# return tokenizer(batch, padding=True, truncation=True)
|
75 |
def tokenize_function(examples):
|
76 |
return tokenizer(examples["quote"], padding=True, truncation=True, return_tensors='pt')
|
77 |
|
78 |
-
# Tokenize the test dataset
|
79 |
-
tokenized_test =
|
80 |
-
|
81 |
-
# tokenized_test = test_dataset.map(lambda batch: tokenize_frugal(batch, tokenizer), batched=True)
|
82 |
-
# tokenized_test = tokenizer(test_dataset, padding = True, truncation= True)
|
83 |
-
|
84 |
-
# dataloader = DataLoader(tokenized_test, batch_size=16, shuffle=False)
|
85 |
-
# print("Started prediction run")
|
86 |
-
|
87 |
-
# model.eval()
|
88 |
-
# with torch.no_grad():
|
89 |
-
# predictions = np.array([])
|
90 |
-
# for batch in dataloader:
|
91 |
-
# test_input_ids = batch["input_ids"].to(device)
|
92 |
-
# test_attention_mask = batch["attention_mask"].to(device)
|
93 |
-
# outputs = model(test_input_ids, test_attention_mask)
|
94 |
-
# p = torch.argmax(outputs.logits, dim=1)
|
95 |
-
# predictions = np.append(predictions, p.cpu().numpy())
|
96 |
-
|
97 |
-
# print("Finished prediction run")
|
98 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
99 |
-
|
100 |
# Create DataLoader
|
|
|
101 |
dataloader = DataLoader(tokenized_test, batch_size=16, shuffle=False, collate_fn=data_collator)
|
102 |
-
|
103 |
print("Started prediction run")
|
104 |
-
|
105 |
# Model inference
|
106 |
model.eval()
|
107 |
predictions = np.array([])
|
108 |
-
|
109 |
with torch.no_grad():
|
110 |
-
|
111 |
for batch in dataloader:
|
112 |
test_input_ids = batch["input_ids"].to(device)
|
113 |
test_attention_mask = batch["attention_mask"].to(device)
|
114 |
outputs = model(test_input_ids, test_attention_mask)
|
115 |
p = torch.argmax(outputs.logits, dim=1)
|
116 |
predictions = np.append(predictions, p.cpu().numpy())
|
117 |
-
|
118 |
print("Finished prediction run")
|
119 |
-
|
120 |
# Ensure "label" column exists in dataset
|
121 |
print(test_dataset.column_names) # Debugging step
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
# Make random predictions (placeholder for actual model inference)
|
126 |
true_labels = test_dataset["label"]
|
127 |
-
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
128 |
|
129 |
#--------------------------------------------------------------------------------------------
|
130 |
# YOUR MODEL INFERENCE STOPS HERE
|
131 |
#--------------------------------------------------------------------------------------------
|
132 |
|
133 |
-
|
134 |
# Stop tracking emissions
|
135 |
emissions_data = tracker.stop_task()
|
136 |
-
|
137 |
# Calculate accuracy
|
138 |
accuracy = accuracy_score(true_labels, predictions)
|
139 |
-
|
140 |
# Prepare results dictionary
|
141 |
results = {
|
142 |
"username": username,
|
@@ -154,5 +125,5 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
154 |
"test_seed": request.test_seed
|
155 |
}
|
156 |
}
|
157 |
-
|
158 |
-
return results
|
|
|
5 |
import random
|
6 |
from torch.utils.data import DataLoader
|
7 |
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments, DataCollatorWithPadding
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
24 |
"""
|
25 |
Evaluate text classification for climate disinformation detection.
|
26 |
|
27 |
+
Current Model: BERT
|
28 |
+
- Uses a pre-trained BERT model for sequence classification
|
|
|
29 |
"""
|
30 |
# Get space info
|
31 |
username, space_url = get_space_info()
|
|
|
51 |
# Split dataset
|
52 |
train_test = dataset["train"]
|
53 |
test_dataset = dataset["test"]
|
54 |
+
|
|
|
|
|
55 |
# Start tracking emissions
|
56 |
tracker.start()
|
57 |
tracker.start_task("inference")
|
|
|
66 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
67 |
model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
|
68 |
|
|
|
|
|
|
|
69 |
def tokenize_function(examples):
|
70 |
return tokenizer(examples["quote"], padding=True, truncation=True, return_tensors='pt')
|
71 |
|
72 |
+
# Tokenize the test dataset
|
73 |
+
tokenized_test = test_dataset.map(tokenize_function, batched=True)
|
74 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# Create DataLoader
|
76 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
77 |
dataloader = DataLoader(tokenized_test, batch_size=16, shuffle=False, collate_fn=data_collator)
|
78 |
+
|
79 |
print("Started prediction run")
|
80 |
+
|
81 |
# Model inference
|
82 |
model.eval()
|
83 |
predictions = np.array([])
|
84 |
+
|
85 |
with torch.no_grad():
|
|
|
86 |
for batch in dataloader:
|
87 |
test_input_ids = batch["input_ids"].to(device)
|
88 |
test_attention_mask = batch["attention_mask"].to(device)
|
89 |
outputs = model(test_input_ids, test_attention_mask)
|
90 |
p = torch.argmax(outputs.logits, dim=1)
|
91 |
predictions = np.append(predictions, p.cpu().numpy())
|
92 |
+
|
93 |
print("Finished prediction run")
|
94 |
+
|
95 |
# Ensure "label" column exists in dataset
|
96 |
print(test_dataset.column_names) # Debugging step
|
97 |
+
|
98 |
+
# Extract true labels
|
|
|
|
|
99 |
true_labels = test_dataset["label"]
|
|
|
100 |
|
101 |
#--------------------------------------------------------------------------------------------
|
102 |
# YOUR MODEL INFERENCE STOPS HERE
|
103 |
#--------------------------------------------------------------------------------------------
|
104 |
|
|
|
105 |
# Stop tracking emissions
|
106 |
emissions_data = tracker.stop_task()
|
107 |
+
|
108 |
# Calculate accuracy
|
109 |
accuracy = accuracy_score(true_labels, predictions)
|
110 |
+
|
111 |
# Prepare results dictionary
|
112 |
results = {
|
113 |
"username": username,
|
|
|
125 |
"test_seed": request.test_seed
|
126 |
}
|
127 |
}
|
128 |
+
|
129 |
+
return results
|