Spaces:
Sleeping
Sleeping
update
Browse files- tasks/text.py +10 -2
tasks/text.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset, Dataset
|
4 |
-
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from torch.utils.data import DataLoader
|
7 |
|
@@ -64,6 +64,13 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
64 |
#--------------------------------------------------------------------------------------------
|
65 |
|
66 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
tokenizer = AutoTokenizer.from_pretrained("cococli/bert-base-uncased-frugalai")
|
69 |
model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
|
@@ -100,7 +107,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
100 |
# Forward pass through the model
|
101 |
p = model(**tokenized_inputs)
|
102 |
output = torch.argmax(p.logits, dim=1).cpu().numpy()
|
103 |
-
print(p)
|
104 |
predictions = np.append(predictions, output)
|
105 |
|
106 |
print("Finished prediction run")
|
@@ -119,6 +126,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
119 |
print('Accuracy: ', (true_labels == predictions)/len(true_labels))
|
120 |
|
121 |
print('Accuracy: ', accuracy_score(true_labels, predictions))
|
|
|
122 |
# Stop tracking emissions
|
123 |
emissions_data = tracker.stop_task()
|
124 |
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
from datasets import load_dataset, Dataset
|
4 |
+
from sklearn.metrics import accuracy_score, f1_score
|
5 |
import random
|
6 |
from torch.utils.data import DataLoader
|
7 |
|
|
|
64 |
#--------------------------------------------------------------------------------------------
|
65 |
|
66 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
67 |
+
model_name = ["cococli/bert-base-uncased-frugalai", 'cococli/roberta-base-frugalai', "cococli/distilbert-base-uncased-frugalai",
|
68 |
+
"cococli/albert-base-v2-frugalai", "cococli/bert-base-uncased-coco-frugalai",
|
69 |
+
"cococli/distilbert-base-uncased-coco-frugalai", "cococli/albert-base-v2-coco-frugalai","cococli/electra-small-discriminator-coco-frugalai",
|
70 |
+
'cococli/roberta-base-coco-frugalai', "cococli/distilbert-base-uncased-climate-frugalai","cococli/albert-base-v2-climate-frugalai",
|
71 |
+
"cococli/electra-small-discriminator-frugalai", "cococli/bert-base-uncased-climate-frugalai","cococli/roberta-base-climate-frugalai",
|
72 |
+
]
|
73 |
+
|
74 |
|
75 |
tokenizer = AutoTokenizer.from_pretrained("cococli/bert-base-uncased-frugalai")
|
76 |
model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
|
|
|
107 |
# Forward pass through the model
|
108 |
p = model(**tokenized_inputs)
|
109 |
output = torch.argmax(p.logits, dim=1).cpu().numpy()
|
110 |
+
# print(p)
|
111 |
predictions = np.append(predictions, output)
|
112 |
|
113 |
print("Finished prediction run")
|
|
|
126 |
print('Accuracy: ', (true_labels == predictions)/len(true_labels))
|
127 |
|
128 |
print('Accuracy: ', accuracy_score(true_labels, predictions))
|
129 |
+
print('F1 SCORE: ', f1_score(true_labels, predictions))
|
130 |
# Stop tracking emissions
|
131 |
emissions_data = tracker.stop_task()
|
132 |
|