NaolTaye commited on
Commit
8b76c22
·
1 Parent(s): b45028b
Files changed (1) hide show
  1. tasks/text.py +10 -2
tasks/text.py CHANGED
@@ -1,7 +1,7 @@
1
  from fastapi import APIRouter
2
  from datetime import datetime
3
  from datasets import load_dataset, Dataset
4
- from sklearn.metrics import accuracy_score
5
  import random
6
  from torch.utils.data import DataLoader
7
 
@@ -64,6 +64,13 @@ async def evaluate_text(request: TextEvaluationRequest):
64
  #--------------------------------------------------------------------------------------------
65
 
66
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
 
 
 
 
 
67
 
68
  tokenizer = AutoTokenizer.from_pretrained("cococli/bert-base-uncased-frugalai")
69
  model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
@@ -100,7 +107,7 @@ async def evaluate_text(request: TextEvaluationRequest):
100
  # Forward pass through the model
101
  p = model(**tokenized_inputs)
102
  output = torch.argmax(p.logits, dim=1).cpu().numpy()
103
- print(p)
104
  predictions = np.append(predictions, output)
105
 
106
  print("Finished prediction run")
@@ -119,6 +126,7 @@ async def evaluate_text(request: TextEvaluationRequest):
119
  print('Accuracy: ', (true_labels == predictions)/len(true_labels))
120
 
121
  print('Accuracy: ', accuracy_score(true_labels, predictions))
 
122
  # Stop tracking emissions
123
  emissions_data = tracker.stop_task()
124
 
 
1
  from fastapi import APIRouter
2
  from datetime import datetime
3
  from datasets import load_dataset, Dataset
4
+ from sklearn.metrics import accuracy_score, f1_score
5
  import random
6
  from torch.utils.data import DataLoader
7
 
 
64
  #--------------------------------------------------------------------------------------------
65
 
66
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
67
+ model_name = ["cococli/bert-base-uncased-frugalai", 'cococli/roberta-base-frugalai', "cococli/distilbert-base-uncased-frugalai",
68
+ "cococli/albert-base-v2-frugalai", "cococli/bert-base-uncased-coco-frugalai",
69
+ "cococli/distilbert-base-uncased-coco-frugalai", "cococli/albert-base-v2-coco-frugalai","cococli/electra-small-discriminator-coco-frugalai",
70
+ 'cococli/roberta-base-coco-frugalai', "cococli/distilbert-base-uncased-climate-frugalai","cococli/albert-base-v2-climate-frugalai",
71
+ "cococli/electra-small-discriminator-frugalai", "cococli/bert-base-uncased-climate-frugalai","cococli/roberta-base-climate-frugalai",
72
+ ]
73
+
74
 
75
  tokenizer = AutoTokenizer.from_pretrained("cococli/bert-base-uncased-frugalai")
76
  model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
 
107
  # Forward pass through the model
108
  p = model(**tokenized_inputs)
109
  output = torch.argmax(p.logits, dim=1).cpu().numpy()
110
+ # print(p)
111
  predictions = np.append(predictions, output)
112
 
113
  print("Finished prediction run")
 
126
  print('Accuracy: ', (true_labels == predictions)/len(true_labels))
127
 
128
  print('Accuracy: ', accuracy_score(true_labels, predictions))
129
+ print('F1 SCORE: ', f1_score(true_labels, predictions))
130
  # Stop tracking emissions
131
  emissions_data = tracker.stop_task()
132