NaolTaye commited on
Commit
e640128
·
1 Parent(s): 4e37d59
Files changed (1) hide show
  1. tasks/text.py +4 -2
tasks/text.py CHANGED
@@ -65,7 +65,7 @@ async def evaluate_text(request: TextEvaluationRequest):
65
 
66
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
67
 
68
- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
69
  model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
70
 
71
  def tokenize_function(examples):
@@ -76,7 +76,7 @@ async def evaluate_text(request: TextEvaluationRequest):
76
  print('AFTER TOKENIZING')
77
  print(tokenized_test.column_names) # Debugging step
78
  print(tokenized_test['input_ids'][:5]) # Debugging step
79
-
80
  # Create DataLoader
81
  data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
82
  dataloader = DataLoader(tokenized_test, batch_size=16, shuffle=False, collate_fn=data_collator)
@@ -88,7 +88,9 @@ async def evaluate_text(request: TextEvaluationRequest):
88
  predictions = np.array([])
89
 
90
  with torch.no_grad():
 
91
  for batch in dataloader:
 
92
  test_input_ids = batch["input_ids"].to(device)
93
  test_attention_mask = batch["attention_mask"].to(device)
94
  outputs = model(test_input_ids, test_attention_mask)
 
65
 
66
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
67
 
68
+ tokenizer = AutoTokenizer.from_pretrained("cococli/bert-base-uncased-frugalai")
69
  model = AutoModelForSequenceClassification.from_pretrained("cococli/bert-base-uncased-frugalai").to(device)
70
 
71
  def tokenize_function(examples):
 
76
  print('AFTER TOKENIZING')
77
  print(tokenized_test.column_names) # Debugging step
78
  print(tokenized_test['input_ids'][:5]) # Debugging step
79
+
80
  # Create DataLoader
81
  data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
82
  dataloader = DataLoader(tokenized_test, batch_size=16, shuffle=False, collate_fn=data_collator)
 
88
  predictions = np.array([])
89
 
90
  with torch.no_grad():
91
+ print('BEFORE PREDICTION')
92
  for batch in dataloader:
93
+ print('INSIDE PREDICTION')
94
  test_input_ids = batch["input_ids"].to(device)
95
  test_attention_mask = batch["attention_mask"].to(device)
96
  outputs = model(test_input_ids, test_attention_mask)