Spaces:
Running
Running
File size: 22,614 Bytes
80e8620 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
import streamlit as st
import os
import time
import torch
import tempfile
from PIL import Image
from dotenv import load_dotenv
import logging
from datetime import datetime
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_DIR = os.getenv("CACHE_DIR", os.path.join(tempfile.gettempdir(), "smoldocling_cache"))
# Ensure cache directory exists
os.makedirs(CACHE_DIR, exist_ok=True)
# Import for Transformers approach
try:
from transformers import AutoProcessor, AutoModelForVision2Seq
from huggingface_hub import login
transformers_available = True
except ImportError:
transformers_available = False
try:
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
docling_available = True
except ImportError:
docling_available = False
# Global variables for model caching
processor = None
model = None
def check_dependencies():
"""Check if all required dependencies are installed"""
missing = []
if not transformers_available:
missing.append("transformers huggingface_hub")
if not docling_available:
missing.append("docling-core")
return missing
def get_available_devices():
"""Get available processing devices"""
devices = ["cpu"]
if torch.cuda.is_available():
cuda_count = torch.cuda.device_count()
for i in range(cuda_count):
devices.append(f"cuda:{i} ({torch.cuda.get_device_name(i)})")
return devices
def get_device_from_selection(selection):
"""Convert user-friendly device selection to torch device"""
if selection.startswith("cuda:"):
return selection.split(" ")[0] # Extract just the "cuda:X" part
return "cpu"
@st.cache_resource
def load_model(_device):
"""Load and cache the model to avoid reloading"""
global processor, model
# Authenticate with Hugging Face
if HF_TOKEN:
login(token=HF_TOKEN)
try:
logger.info(f"Loading SmolDocling model on {_device}...")
processor = AutoProcessor.from_pretrained(
"ds4sd/SmolDocling-256M-preview",
cache_dir=CACHE_DIR
)
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview",
torch_dtype=torch.float16 if _device.startswith("cuda") else torch.float32,
cache_dir=CACHE_DIR
).to(_device)
logger.info("Model loaded successfully")
return processor, model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
def optimize_image(image, max_size=1600):
"""Optimize image size while maintaining aspect ratio"""
width, height = image.size
if max(width, height) > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
image = image.resize((new_width, new_height), Image.LANCZOS)
return image
def process_single_image(image, prompt_text="Convert this page to docling.", device="cpu", show_progress=None):
"""Process a single image"""
global processor, model
# Optimize image
image = optimize_image(image)
start_time = time.time()
# Load the model if not already loaded
processor, model = load_model(device)
# Create input messages
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": prompt_text}
]
},
]
# Prepare inputs
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
inputs = inputs.to(device)
# Generate outputs
with torch.no_grad(): # Add this to save memory
generated_ids = model.generate(
**inputs,
max_new_tokens=1500, # Increased for better results
do_sample=False, # Deterministic generation
num_beams=1, # Simple beam search
temperature=1.0, # No temperature scaling
)
prompt_length = inputs.input_ids.shape[1]
trimmed_generated_ids = generated_ids[:, prompt_length:]
doctags = processor.batch_decode(
trimmed_generated_ids,
skip_special_tokens=False,
)[0].lstrip()
# Clean the output
doctags = doctags.replace("<end_of_utterance>", "").strip()
# Populate document
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
# Create a docling document
doc = DoclingDocument(name="Document")
doc.load_from_doctags(doctags_doc)
# Export as markdown
md_content = doc.export_to_markdown()
# Export as HTML
html_content = doc.export_to_html()
# Get plain text
plain_text = doc.export_to_text()
processing_time = time.time() - start_time
return {
"doctags": doctags,
"markdown": md_content,
"html": html_content,
"text": plain_text,
"processing_time": processing_time
}
def process_batch(images, prompt_text, device, progress_bar=None):
"""Process a batch of images with progress tracking"""
results = []
total = len(images)
for idx, image in enumerate(images):
if progress_bar:
progress_bar.progress((idx) / total, text=f"Processing image {idx+1}/{total}")
result = process_single_image(image, prompt_text, device)
results.append(result)
if progress_bar:
progress_bar.progress((idx + 1) / total, text=f"Processed {idx+1}/{total} images")
return results
def save_session_history(results):
"""Save processing results to session history"""
if 'history' not in st.session_state:
st.session_state.history = []
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
for idx, result in enumerate(results):
st.session_state.history.append({
"id": len(st.session_state.history) + 1,
"timestamp": timestamp,
"type": "Image " + str(idx + 1),
"processing_time": result["processing_time"],
"result": result
})
def display_history():
"""Display session history"""
if 'history' not in st.session_state or not st.session_state.history:
st.info("No processing history available")
return
st.subheader("Processing History")
for item in reversed(st.session_state.history):
with st.expander(f"#{item['id']} - {item['type']} ({item['timestamp']})"):
st.write(f"Processing time: {item['processing_time']:.2f} seconds")
tabs = st.tabs(["Markdown", "Text", "DocTags", "HTML"])
with tabs[0]:
st.markdown(item['result']['markdown'])
st.download_button(
"Download Markdown",
item['result']['markdown'],
file_name=f"output_{item['id']}.md"
)
with tabs[1]:
st.text_area("Plain Text", item['result']['text'], height=200)
st.download_button(
"Download Text",
item['result']['text'],
file_name=f"output_{item['id']}.txt"
)
with tabs[2]:
st.text_area("DocTags", item['result']['doctags'], height=200)
st.download_button(
"Download DocTags",
item['result']['doctags'],
file_name=f"output_{item['id']}.dt"
)
with tabs[3]:
st.code(item['result']['html'], language="html")
st.download_button(
"Download HTML",
item['result']['html'],
file_name=f"output_{item['id']}.html"
)
def main():
# App configuration
st.set_page_config(
page_title="SmolDocling OCR App",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom theme
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
margin-bottom: 0.5rem;
}
.sub-header {
font-size: 1.2rem;
color: #666;
margin-bottom: 2rem;
}
.stTabs [data-baseweb="tab-list"] {
gap: 2px;
}
.stTabs [data-baseweb="tab"] {
padding: 10px 16px;
background-color: #f0f2f6;
}
.stTabs [aria-selected="true"] {
background-color: #e6f0ff;
}
</style>
""", unsafe_allow_html=True)
# App header
st.markdown('<p class="main-header">SmolDocling OCR App</p>', unsafe_allow_html=True)
st.markdown('<p class="sub-header">Extract text from images using SmolDocling AI</p>', unsafe_allow_html=True)
# Check dependencies
missing_deps = check_dependencies()
if missing_deps:
st.error(f"Missing dependencies: {', '.join(missing_deps)}. Please install them to use this app.")
st.info("Install with: pip install " + " ".join(missing_deps))
st.stop()
# Initialize session state
if 'results' not in st.session_state:
st.session_state.results = []
# Create sidebar
with st.sidebar:
st.header("Configuration")
# Device selection
st.subheader("Processing Device")
available_devices = get_available_devices()
selected_device = st.selectbox(
"Select processing device",
available_devices,
index=0 if len(available_devices) == 1 else 1, # Default to CUDA if available
help="Choose the device for model inference. GPU (CUDA) is recommended for faster processing."
)
device = get_device_from_selection(selected_device)
# Model info
st.info(f"Selected device: {selected_device}")
if device == "cpu":
st.warning("β οΈ CPU processing may be slow. Select a GPU device if available for faster performance.")
# Memory management
if device.startswith("cuda"):
with st.expander("GPU Memory Management"):
st.write("Current GPU Memory Usage:")
if torch.cuda.is_available():
gpu_idx = int(device.split(":")[1]) if ":" in device else 0
allocated = torch.cuda.memory_allocated(gpu_idx) / (1024 ** 3)
reserved = torch.cuda.memory_reserved(gpu_idx) / (1024 ** 3)
st.progress(allocated / (torch.cuda.get_device_properties(gpu_idx).total_memory / (1024 ** 3)))
st.write(f"Allocated: {allocated:.2f} GB")
st.write(f"Reserved: {reserved:.2f} GB")
if st.button("Clear GPU Cache"):
torch.cuda.empty_cache()
st.success("GPU cache cleared")
# Upload options
st.subheader("Upload Options")
upload_option = st.radio("Choose upload option:", ["Single Image", "Multiple Images"])
# Advanced options
with st.expander("Advanced Options"):
task_type = st.selectbox(
"Select task type",
[
"Convert this page to docling.",
"Convert this table to OTSL.",
"Convert code to text.",
"Convert formula to latex.",
"Convert chart to OTSL.",
"Extract all section header elements on the page."
]
)
custom_prompt = st.text_area(
"Custom prompt (optional)",
value="",
help="Provide a custom prompt if needed. Leave empty to use the selected task type."
)
max_image_size = st.slider(
"Max image dimension (pixels)",
min_value=800,
max_value=3200,
value=1600,
step=100,
help="Larger values may improve OCR quality but use more memory"
)
final_prompt = custom_prompt if custom_prompt else task_type
# Upload controls
st.subheader("Upload Image(s)")
if upload_option == "Single Image":
uploaded_file = st.file_uploader("Upload image", type=["jpg", "jpeg", "png", "pdf"])
if uploaded_file is not None:
try:
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Uploaded Image", width=250)
except Exception as e:
st.error(f"Error loading image: {str(e)}")
else:
uploaded_files = st.file_uploader(
"Upload multiple images",
type=["jpg", "jpeg", "png"],
accept_multiple_files=True
)
if uploaded_files:
st.success(f"{len(uploaded_files)} images uploaded")
# Process button
if (upload_option == "Single Image" and 'uploaded_file' in locals() and uploaded_file is not None) or \
(upload_option == "Multiple Images" and 'uploaded_files' in locals() and uploaded_files):
process_button = st.button("Process Image(s)", type="primary")
# History button
st.subheader("History")
if st.button("Show Processing History"):
st.session_state.show_history = True
# About section
with st.expander("About SmolDocling OCR"):
st.write("""
This app uses SmolDocling, a powerful OCR model for document understanding from Hugging Face Hub.
The app extracts DocTags format and converts it to Markdown, HTML, and plain text for easy reading.
Available tasks:
- Convert pages to DocTags (general OCR)
- Convert tables to OTSL
- Convert code snippets to text
- Convert formulas to LaTeX
- Convert charts to OTSL
- Extract section headers
""")
# Main content area
if 'show_history' in st.session_state and st.session_state.show_history:
display_history()
st.session_state.show_history = False
elif upload_option == "Single Image" and 'uploaded_file' in locals() and uploaded_file is not None and process_button:
with st.spinner("Processing image..."):
try:
progress_bar = st.progress(0, text="Preparing to process...")
# Update global optimization settings
optimize_image.func_defaults = (max_image_size,)
result = process_single_image(image, final_prompt, device)
st.session_state.results = [result]
# Save to history
save_session_history(st.session_state.results)
progress_bar.progress(1.0, text="Processing complete!")
# Display results
tabs = st.tabs(["Markdown", "Text", "DocTags", "HTML"])
with tabs[0]:
st.subheader("Markdown Output")
st.markdown(result["markdown"])
st.download_button(
"Download Markdown",
result["markdown"],
file_name="output.md"
)
with tabs[1]:
st.subheader("Plain Text Output")
st.text_area("Extracted Text", result["text"], height=300)
st.download_button(
"Download Text",
result["text"],
file_name="output.txt"
)
with tabs[2]:
st.subheader("DocTags Output")
st.text_area("DocTags", result["doctags"], height=300)
st.download_button(
"Download DocTags",
result["doctags"],
file_name="output.dt"
)
with tabs[3]:
st.subheader("HTML Output")
st.code(result["html"], language="html")
st.download_button(
"Download HTML",
result["html"],
file_name="output.html"
)
st.success(f"Processing completed in {result['processing_time']:.2f} seconds on {selected_device}")
except Exception as e:
st.error(f"Error processing image: {str(e)}")
logger.error(f"Error processing image: {str(e)}", exc_info=True)
elif upload_option == "Multiple Images" and 'uploaded_files' in locals() and uploaded_files and process_button:
try:
images = [Image.open(file).convert("RGB") for file in uploaded_files]
if len(images) > 0:
with st.spinner(f"Processing {len(images)} images..."):
progress_bar = st.progress(0, text="Preparing to process...")
# Update global optimization settings
optimize_image.func_defaults = (max_image_size,)
results = process_batch(images, final_prompt, device, progress_bar)
st.session_state.results = results
# Save to history
save_session_history(results)
progress_bar.progress(1.0, text="Processing complete!")
# Display results
st.subheader("Processing Results")
total_time = sum(result["processing_time"] for result in results)
avg_time = total_time / len(results)
st.write(f"Total processing time: {total_time:.2f} seconds on {selected_device}")
st.write(f"Average processing time: {avg_time:.2f} seconds per image")
# Create tabs for each image
for idx, (result, image) in enumerate(zip(results, images)):
with st.expander(f"Image {idx+1} Results"):
col1, col2 = st.columns([1, 2])
with col1:
st.image(image, caption=f"Image {idx+1}", width=250)
st.write(f"Processing time: {result['processing_time']:.2f} seconds")
with col2:
inner_tabs = st.tabs(["Markdown", "Text", "DocTags", "HTML"])
with inner_tabs[0]:
st.markdown(result["markdown"])
st.download_button(
f"Download Markdown",
result["markdown"],
file_name=f"output_{idx+1}.md"
)
with inner_tabs[1]:
st.text_area("Plain Text", result["text"], height=200)
st.download_button(
f"Download Text",
result["text"],
file_name=f"output_{idx+1}.txt"
)
with inner_tabs[2]:
st.text_area("DocTags", result["doctags"], height=200)
st.download_button(
f"Download DocTags",
result["doctags"],
file_name=f"output_{idx+1}.dt"
)
with inner_tabs[3]:
st.code(result["html"], language="html")
st.download_button(
f"Download HTML",
result["html"],
file_name=f"output_{idx+1}.html"
)
st.success(f"All images processed successfully")
except Exception as e:
st.error(f"Error processing images: {str(e)}")
logger.error(f"Error processing images: {str(e)}", exc_info=True)
# Display a welcome message if no image has been uploaded
if ('uploaded_file' not in locals() or uploaded_file is None) and \
('uploaded_files' not in locals() or not uploaded_files):
st.info("π Upload an image using the sidebar to get started")
if __name__ == "__main__":
main() |