Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,22 @@
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
import numpy as np
|
5 |
|
6 |
# Load the pre-trained model
|
7 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
chunks = text.split('\n') # Assuming chunks are separated by new lines
|
13 |
-
|
14 |
-
# Encode the input chunks to get the embeddings
|
15 |
-
embeddings = embedding_model.encode(chunks, convert_to_tensor=False)
|
16 |
-
|
17 |
-
# Convert the embeddings to a PyTorch tensor
|
18 |
-
embeddings_tensor = torch.tensor(embeddings)
|
19 |
-
|
20 |
-
# Add batch dimension to the tensor (if needed)
|
21 |
-
embeddings_tensor = embeddings_tensor.unsqueeze(0) # Uncomment if a batch dimension is required
|
22 |
-
|
23 |
-
# Return the embeddings tensor and its shape
|
24 |
-
return embeddings_tensor.tolist(), embeddings_tensor.shape
|
25 |
|
26 |
# Define the Gradio interface
|
27 |
interface = gr.Interface(
|
28 |
-
fn=
|
29 |
-
inputs=gr.Textbox(lines=
|
30 |
-
outputs=
|
31 |
-
title="Sentence
|
32 |
-
description="
|
33 |
)
|
34 |
|
35 |
-
# Launch the
|
36 |
-
interface.launch()
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load the pre-trained model
|
6 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
7 |
|
8 |
+
def get_embeddings(sentences):
|
9 |
+
embeddings = model.encode(sentences, convert_to_tensor=True)
|
10 |
+
return embeddings.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Define the Gradio interface
|
13 |
interface = gr.Interface(
|
14 |
+
fn=get_embeddings, # Function to call
|
15 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
|
16 |
+
outputs=gr.Image(label="Embeddings", image_formatter=plot_embeddings)
|
17 |
+
title="Sentence Embeddings", # Interface title
|
18 |
+
description="Enter sentences to get their embeddings." # Description
|
19 |
)
|
20 |
|
21 |
+
# Launch the interface
|
22 |
+
interface.launch()
|