Spaces:
Building
Building
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
import gradio as gr
|
3 |
import update_packages
|
|
|
4 |
|
5 |
# Load the pre-trained model
|
6 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
@@ -8,14 +9,14 @@ embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
8 |
# Define the function to process requests
|
9 |
def generate_embeddings(chunks):
|
10 |
embeddings = embedding_model.encode(chunks, convert_to_tensor=False)
|
11 |
-
shape= embeddings.shape
|
12 |
-
return embeddings, shape # Convert
|
13 |
|
14 |
# Define the Gradio interface
|
15 |
interface = gr.Interface(
|
16 |
fn=generate_embeddings,
|
17 |
-
inputs=gr.Textbox(lines=5, placeholder="Enter text chunks here..."),
|
18 |
-
outputs=gr.JSON(),
|
19 |
title="Sentence Transformer Embeddings",
|
20 |
description="Generate embeddings for input text chunks."
|
21 |
)
|
|
|
1 |
from sentence_transformers import SentenceTransformer
|
2 |
import gradio as gr
|
3 |
import update_packages
|
4 |
+
import numpy as np
|
5 |
|
6 |
# Load the pre-trained model
|
7 |
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
9 |
# Define the function to process requests
|
10 |
def generate_embeddings(chunks):
|
11 |
embeddings = embedding_model.encode(chunks, convert_to_tensor=False)
|
12 |
+
shape = embeddings.shape
|
13 |
+
return embeddings.tolist(), shape # Convert numpy array to list
|
14 |
|
15 |
# Define the Gradio interface
|
16 |
interface = gr.Interface(
|
17 |
fn=generate_embeddings,
|
18 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter text chunks here...", type="list"),
|
19 |
+
outputs=[gr.JSON(label="Embeddings"), gr.Label(label="Shape")],
|
20 |
title="Sentence Transformer Embeddings",
|
21 |
description="Generate embeddings for input text chunks."
|
22 |
)
|