from sentence_transformers import SentenceTransformer import gradio as gr import torch # Load the pre-trained model embedding_model = SentenceTransformer('all-MiniLM-L6-v2') def get_embeddings(sentences): embeddings = model.encode(sentences, convert_to_tensor=True) return embeddings.tolist() # Define the Gradio interface interface = gr.Interface( fn=get_embeddings, # Function to call inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component outputs=gr.Image(label="Embeddings", image_formatter=plot_embeddings) title="Sentence Embeddings", # Interface title description="Enter sentences to get their embeddings." # Description ) # Launch the interface interface.launch()