from sentence_transformers import SentenceTransformer import gradio as gr import update_packages import numpy as np # Load the pre-trained model embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Define the function to process requests def generate_embeddings(chunks): embeddings = embedding_model.encode(chunks, convert_to_tensor=False) shape = embeddings.shape return embeddings.tolist(), shape # Convert numpy array to list # Define the Gradio interface interface = gr.Interface( fn=generate_embeddings, inputs=gr.Textbox(lines=5, placeholder="Enter text chunks here...", type="list"), outputs=[gr.JSON(label="Embeddings"), gr.Label(label="Shape")], title="Sentence Transformer Embeddings", description="Generate embeddings for input text chunks." ) # Launch the Gradio app interface.launch()