from sentence_transformers import SentenceTransformer import gradio as gr # Load the pre-trained model embedding_model = SentenceTransformer('all-MiniLM-L6-v2') # Define the function to process requests def generate_embeddings(chunks): embeddings = embedding_model.encode(chunks, convert_to_tensor=True) return embeddings.tolist() # Convert tensor to list for Gradio # Define the Gradio interface iface = gr.Interface( fn=generate_embeddings, inputs=gr.inputs.Textbox(lines=5, placeholder="Enter text chunks here..."), outputs=gr.outputs.JSON(), title="Sentence Transformer Embeddings", description="Generate embeddings for input text chunks." ) # Launch the Gradio app if __name__ == "__main__": iface.launch()