Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,25 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
|
4 |
# Load the pre-trained model
|
5 |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
6 |
|
7 |
def get_embeddings(sentences):
|
|
|
|
|
8 |
# Get embeddings for the input sentences
|
9 |
-
embeddings = model.encode(sentences)
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
# Define the Gradio interface
|
13 |
interface = gr.Interface(
|
14 |
fn=get_embeddings, # Function to call
|
15 |
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
|
16 |
-
outputs=gr.
|
17 |
title="Sentence Embeddings", # Interface title
|
18 |
description="Enter sentences to get their embeddings." # Description
|
19 |
)
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
|
5 |
# Load the pre-trained model
|
6 |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
7 |
|
8 |
def get_embeddings(sentences):
|
9 |
+
# Split sentences by new line
|
10 |
+
# sentences_list = [s.strip() for s in sentences.split('\n') if s.strip()]
|
11 |
# Get embeddings for the input sentences
|
12 |
+
embeddings = model.encode(sentences, convert_to_tensor=True)
|
13 |
+
# Convert to 2D NumPy array
|
14 |
+
# embeddings_array = np.array(embeddings)
|
15 |
+
embeddings_array=embeddings.tolist()
|
16 |
+
return embeddings_array
|
17 |
|
18 |
# Define the Gradio interface
|
19 |
interface = gr.Interface(
|
20 |
fn=get_embeddings, # Function to call
|
21 |
inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
|
22 |
+
outputs=gr.Array(), # Output component
|
23 |
title="Sentence Embeddings", # Interface title
|
24 |
description="Enter sentences to get their embeddings." # Description
|
25 |
)
|