codeblacks commited on
Commit
f3c5d4d
·
verified ·
1 Parent(s): a80906c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -1,19 +1,25 @@
1
  import gradio as gr
 
2
  from sentence_transformers import SentenceTransformer
3
 
4
  # Load the pre-trained model
5
  model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
6
 
7
  def get_embeddings(sentences):
 
 
8
  # Get embeddings for the input sentences
9
- embeddings = model.encode(sentences)
10
- return embeddings.tolist()
 
 
 
11
 
12
  # Define the Gradio interface
13
  interface = gr.Interface(
14
  fn=get_embeddings, # Function to call
15
  inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
16
- outputs=gr.JSON(), # Output component
17
  title="Sentence Embeddings", # Interface title
18
  description="Enter sentences to get their embeddings." # Description
19
  )
 
1
  import gradio as gr
2
+ import numpy as np
3
  from sentence_transformers import SentenceTransformer
4
 
5
  # Load the pre-trained model
6
  model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
7
 
8
  def get_embeddings(sentences):
9
+ # Split sentences by new line
10
+ # sentences_list = [s.strip() for s in sentences.split('\n') if s.strip()]
11
  # Get embeddings for the input sentences
12
+ embeddings = model.encode(sentences, convert_to_tensor=True)
13
+ # Convert to 2D NumPy array
14
+ # embeddings_array = np.array(embeddings)
15
+ embeddings_array=embeddings.tolist()
16
+ return embeddings_array
17
 
18
  # Define the Gradio interface
19
  interface = gr.Interface(
20
  fn=get_embeddings, # Function to call
21
  inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
22
+ outputs=gr.Array(), # Output component
23
  title="Sentence Embeddings", # Interface title
24
  description="Enter sentences to get their embeddings." # Description
25
  )