codeblacks commited on
Commit
fb58c1c
·
verified ·
1 Parent(s): 7149c22

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -9
app.py CHANGED
@@ -1,25 +1,18 @@
1
  import gradio as gr
2
- import numpy as np
3
  from sentence_transformers import SentenceTransformer
4
 
5
  # Load the pre-trained model
6
  model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
7
 
8
  def get_embeddings(sentences):
9
- # Split sentences by new line
10
- # sentences_list = [s.strip() for s in sentences.split('\n') if s.strip()]
11
- # Get embeddings for the input sentences
12
  embeddings = model.encode(sentences, convert_to_tensor=True)
13
- # Convert to 2D NumPy array
14
- # embeddings_array = np.array(embeddings)
15
- embeddings_array=embeddings.tolist()
16
- return embeddings_array
17
 
18
  # Define the Gradio interface
19
  interface = gr.Interface(
20
  fn=get_embeddings, # Function to call
21
  inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
22
- outputs=gr.DataFrame(),
23
  title="Sentence Embeddings", # Interface title
24
  description="Enter sentences to get their embeddings." # Description
25
  )
 
1
  import gradio as gr
 
2
  from sentence_transformers import SentenceTransformer
3
 
4
  # Load the pre-trained model
5
  model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
6
 
7
  def get_embeddings(sentences):
 
 
 
8
  embeddings = model.encode(sentences, convert_to_tensor=True)
9
+ return embeddings.tolist()
 
 
 
10
 
11
  # Define the Gradio interface
12
  interface = gr.Interface(
13
  fn=get_embeddings, # Function to call
14
  inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component
15
+ outputs=gr.JSON(),
16
  title="Sentence Embeddings", # Interface title
17
  description="Enter sentences to get their embeddings." # Description
18
  )