import gradio as gr from sentence_transformers import SentenceTransformer # Load the pre-trained model model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def get_embeddings(sentences): embeddings = model.encode(sentences, convert_to_tensor=True) return embeddings.tolist() # Define the Gradio interface interface = gr.Interface( fn=get_embeddings, # Function to call inputs=gr.Textbox(lines=2, placeholder="Enter sentences here, one per line"), # Input component # outputs=gr.JSON(), outputs=gr.Textbox(label="Embeddings"), title="Sentence Embeddings", # Interface title description="Enter sentences to get their embeddings." # Description ) # Launch the interface interface.launch()