import streamlit as st import numpy as np from sentence_transformers import SentenceTransformer # Load the pre-trained model model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') st.title("Sentence Embeddings") # Input from the user sentences = st.text_area("Enter sentences (one per line)") if sentences: # Split sentences by new line sentences_list = [s.strip() for s in sentences.split('\n') if s.strip()] # Get embeddings embeddings = model.encode(sentences_list) # Convert to 2D NumPy array embeddings_array = np.array(embeddings) st.write(embeddings_array)