Spaces:
Running
Running
File size: 8,494 Bytes
ea6d2b9 b1e2cf3 4da8ab2 80f4105 4da8ab2 ea6d2b9 b1e2cf3 4da8ab2 80f4105 4da8ab2 1cc26a0 4da8ab2 b1e2cf3 1cc26a0 4da8ab2 c12e9a4 4da8ab2 c12e9a4 4da8ab2 ea6d2b9 80f4105 ea6d2b9 80f4105 ea6d2b9 80f4105 ea6d2b9 80f4105 4da8ab2 ea6d2b9 1cc26a0 ea6d2b9 80f4105 1cc26a0 ea6d2b9 4da8ab2 ea6d2b9 1cc26a0 ea6d2b9 80f4105 1cc26a0 ea6d2b9 4da8ab2 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 80f4105 1cc26a0 ea6d2b9 80f4105 1cc26a0 fd2db8e 80f4105 4da8ab2 1cc26a0 4da8ab2 fd2db8e 80f4105 1cc26a0 80f4105 ea6d2b9 80f4105 1cc26a0 4da8ab2 ea6d2b9 4da8ab2 ea6d2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
from flask import Flask, request, render_template_string
from openai import OpenAI
import os
import json
from urllib.parse import quote
import html
app = Flask(__name__)
# Initialize OpenAI client with API key and base URL from environment variables
client = OpenAI(
api_key=os.environ["OPENAI_API_KEY"],
base_url=os.environ["OPENAI_BASE_URL"]
)
# Define constants for pagination
RESULTS_PER_PAGE = 10
TOTAL_RESULTS = 30 # Generate 30 results to allow pagination
def fetch_search_results(query):
"""Fetch search results from the LLM based on the user's query."""
if not query.strip():
return None, "Please enter a search query."
prompt = f"""
You are a search engine that provides informative and relevant results. For the given query '{query}',
generate {TOTAL_RESULTS} search results. Each result should include:
- 'title': A concise, descriptive title of the result.
- 'snippet': A short summary (2-3 sentences) of the content.
- 'url': A plausible, clickable URL where the information might be found (e.g., a real or hypothetical website).
Format the response as a JSON array of objects, where each object has 'title', 'snippet', and 'url' fields.
Ensure the results are diverse, relevant to the query, and the URLs are realistic (e.g., https://example.com/page).
"""
try:
response = client.chat.completions.create(
model="gemini-2.0-flash-lite", # Updated model name
messages=[
{"role": "system", "content": "You are a helpful search engine."},
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"}
)
content = response.choices[0].message.content
results = json.loads(content)
# Handle different possible JSON structures
if isinstance(results, dict) and "results" in results:
results = results["results"]
elif isinstance(results, list):
pass
else:
return None, "Error: Unexpected JSON structure."
return results, None
except Exception as e:
error_msg = str(e)
if "404" in error_msg:
return None, f"Error 404: Model or endpoint not found. Check OPENAI_BASE_URL ({os.environ['OPENAI_BASE_URL']}) and model name."
elif "401" in error_msg:
return None, "Error 401: Invalid API key. Check OPENAI_API_KEY."
else:
return None, f"Error: {error_msg}"
@app.route('/', methods=['GET'])
def search_page():
"""Generate and serve the search results page."""
query = request.args.get('query', '')
page = request.args.get('page', '1')
try:
page = int(page)
except ValueError:
page = 1
if not query.strip():
html_content = """
<html>
<head><title>LLM Search Engine</title></head>
<body style="font-family: Arial, sans-serif;">
<h1>LLM Search Engine</h1>
<form method="get" action="/">
<input type="text" name="query" placeholder="Type your search here...">
<input type="submit" value="Search">
<input type="hidden" name="page" value="1">
</form>
<p>Please enter a search query.</p>
</body>
</html>
"""
return render_template_string(html_content)
results, error = fetch_search_results(query)
if error:
html_content = f"""
<html>
<head><title>LLM Search Engine</title></head>
<body style="font-family: Arial, sans-serif;">
<h1>LLM Search Engine</h1>
<form method="get" action="/">
<input type="text" name="query" value="{html.escape(query)}">
<input type="submit" value="Search">
<input type="hidden" name="page" value="1">
</form>
<p style="color: red;">{error}</p>
</body>
</html>
"""
return render_template_string(html_content)
# Calculate pagination boundaries
start_idx = (page - 1) * RESULTS_PER_PAGE
end_idx = start_idx + RESULTS_PER_PAGE
total_pages = (len(results) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE
# Ensure indices are within bounds
if start_idx >= len(results):
html_content = f"""
<html>
<head><title>LLM Search Engine</title></head>
<body style="font-family: Arial, sans-serif;">
<h1>LLM Search Engine</h1>
<form method="get" action="/">
<input type="text" name="query" value="{html.escape(query)}">
<input type="submit" value="Search">
<input type="hidden" name="page" value="1">
</form>
<p>No more results to display.</p>
</body>
</html>
"""
return render_template_string(html_content)
paginated_results = results[start_idx:end_idx]
# Generate full HTML page
html_content = f"""
<html>
<head>
<title>LLM Search Engine</title>
<style>
body {{
font-family: Arial, sans-serif;
margin: 0;
padding: 20px;
max-width: 800px;
margin-left: auto;
margin-right: auto;
}}
.search-box input[type="text"] {{
width: 70%;
padding: 8px;
font-size: 16px;
border: 1px solid #dfe1e5;
border-radius: 4px;
}}
.search-box input[type="submit"] {{
padding: 8px 16px;
font-size: 14px;
background-color: #f8f9fa;
border: 1px solid #dfe1e5;
border-radius: 4px;
cursor: pointer;
}}
.search-result {{
margin-bottom: 20px;
}}
.search-result a {{
color: #1a0dab;
font-size: 18px;
text-decoration: none;
}}
.search-result a:hover {{
text-decoration: underline;
}}
.search-result .url {{
color: #006621;
font-size: 14px;
margin: 2px 0;
}}
.search-result p {{
color: #545454;
font-size: 14px;
margin: 2px 0;
}}
.pagination {{
margin-top: 20px;
text-align: center;
}}
.pagination a, .pagination span {{
margin: 0 10px;
color: #1a0dab;
text-decoration: none;
}}
.pagination a:hover {{
text-decoration: underline;
}}
</style>
</head>
<body>
<h1>LLM Search Engine</h1>
<form class="search-box" method="get" action="/">
<input type="text" name="query" value="{html.escape(query)}">
<input type="submit" value="Search">
<input type="hidden" name="page" value="1">
</form>
<h2>Results for '{html.escape(query)}' (Page {page} of {total_pages})</h2>
<div class="results">
"""
for result in paginated_results:
title = html.escape(result.get("title", "No title"))
snippet = html.escape(result.get("snippet", "No snippet"))
url = html.escape(result.get("url", "#"))
html_content += f"""
<div class="search-result">
<a href="{url}" target="_blank">{title}</a>
<div class="url">{url}</div>
<p>{snippet}</p>
</div>
"""
# Pagination links
encoded_query = quote(query)
prev_link = f'<a href="/?query={encoded_query}&page={page-1}">Previous</a>' if page > 1 else '<span>Previous</span>'
next_link = f'<a href="/?query={encoded_query}&page={page+1}">Next</a>' if page < total_pages else '<span>Next</span>'
html_content += f"""
</div>
<div class="pagination">
{prev_link}
<span>Page {page} of {total_pages}</span>
{next_link}
</div>
</body>
</html>
"""
return render_template_string(html_content)
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=int(os.environ.get("PORT", 5000))) |