Spaces:
Running
Running
File size: 6,539 Bytes
4da8ab2 b1e2cf3 4da8ab2 b1e2cf3 4da8ab2 b1e2cf3 c12e9a4 4da8ab2 c12e9a4 4da8ab2 c12e9a4 4da8ab2 c12e9a4 4da8ab2 c12e9a4 4da8ab2 c12e9a4 4da8ab2 b1e2cf3 4da8ab2 c12e9a4 4da8ab2 c12e9a4 4da8ab2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
from openai import OpenAI
import os
import json
# Initialize OpenAI client with API key and base URL from environment variables
client = OpenAI(
api_key=os.environ["OPENAI_API_KEY"],
base_url=os.environ["OPENAI_BASE_URL"]
)
# Define the number of results per page and total results to generate
RESULTS_PER_PAGE = 10
TOTAL_RESULTS = 30 # Generate 30 results to allow pagination
def fetch_search_results(query):
"""Fetch search results from the LLM based on the user's query."""
if not query.strip():
return None, "Please enter a search query."
prompt = f"""
You are a search engine that provides informative and relevant results. For the given query '{query}',
generate {TOTAL_RESULTS} search results, each with a title and a snippet that summarizes the information.
Format the response as a JSON array of objects, where each object has 'title' and 'snippet' fields.
Ensure the results are diverse and relevant to the query.
"""
try:
response = client.chat.completions.create(
model="gemini-2.0-flash-lite", # Adjust model name as needed (e.g., 'xai-model-name')
messages=[
{"role": "system", "content": "You are a helpful search engine."},
{"role": "user", "content": prompt}
],
response_format={"type": "json_object"}
)
content = response.choices[0].message.content
results = json.loads(content)
# Handle different possible JSON structures
if isinstance(results, dict) and "results" in results:
results = results["results"]
elif isinstance(results, list):
pass
else:
return None, "Error: Unexpected JSON structure."
return results, None
except Exception as e:
error_msg = str(e)
if "404" in error_msg:
return None, f"Error 404: Model or endpoint not found. Check OPENAI_BASE_URL ({os.environ['OPENAI_BASE_URL']}) and model name."
elif "401" in error_msg:
return None, "Error 401: Invalid API key. Check OPENAI_API_KEY."
else:
return None, f"Error: {error_msg}"
def display_search_results(query, page=1):
"""Display search results for the given query and page number."""
results, error = fetch_search_results(query)
if error:
return error, None, None
# Calculate pagination boundaries
start_idx = (page - 1) * RESULTS_PER_PAGE
end_idx = start_idx + RESULTS_PER_PAGE
total_pages = (len(results) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE
# Ensure indices are within bounds
if start_idx >= len(results):
return "No more results to display.", None, None
paginated_results = results[start_idx:end_idx]
# Format results into HTML
html = """
<style>
.search-result {
margin-bottom: 20px;
}
.search-result h3 {
color: blue;
font-size: 18px;
margin: 0;
}
.search-result p {
font-size: 14px;
margin: 5px 0 0 0;
}
.pagination {
margin-top: 20px;
}
</style>
<div>
"""
html += f"<h2>Search Results for '{query}' (Page {page} of {total_pages})</h2>"
html += "<ul>"
for result in paginated_results:
title = result.get("title", "No title")
snippet = result.get("snippet", "No snippet")
html += f'<li class="search-result"><h3>{title}</h3><p>{snippet}</p></li>'
html += "</ul>"
# Add pagination controls
html += '<div class="pagination">'
if page > 1:
html += f'<button onclick="update_page({page - 1})">Previous</button>'
if page < total_pages:
html += f'<button onclick="update_page({page + 1})">Next</button>'
html += '</div></div>'
return html, page - 1 if page > 1 else None, page + 1 if page < total_pages else None
def search_handler(query, page):
"""Handle search submission and pagination."""
html, prev_page, next_page = display_search_results(query, page)
return html
# Build Gradio interface with Blocks for state management
with gr.Blocks(title="LLM Search Engine") as app:
gr.Markdown("# LLM Search Engine")
gr.Markdown("Enter a query below to search using a large language model (press Enter or click Search).")
query_input = gr.Textbox(label="Search Query", placeholder="Type your search here...")
search_button = gr.Button("Search")
output_html = gr.HTML()
# Hidden state to track current page
page_state = gr.State(value=1)
# Define submit behavior
def on_submit(query, page):
return search_handler(query, page), page
# Trigger search on Enter key or button click
query_input.submit(
fn=on_submit,
inputs=[query_input, page_state],
outputs=[output_html, page_state]
)
search_button.click(
fn=on_submit,
inputs=[query_input, page_state],
outputs=[output_html, page_state]
)
# Pagination buttons
with gr.Row():
prev_button = gr.Button("Previous", visible=False)
next_button = gr.Button("Next", visible=False)
def update_page(query, page, direction):
new_page = page + direction
html, prev_page, next_page = display_search_results(query, new_page)
return html, new_page, gr.update(visible=prev_page is not None), gr.update(visible=next_page is not None)
prev_button.click(
fn=lambda q, p: update_page(q, p, -1),
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
next_button.click(
fn=lambda q, p: update_page(q, p, 1),
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
# Update button visibility after search
def update_visibility(query, page):
html, prev_page, next_page = display_search_results(query, page)
return html, page, gr.update(visible=prev_page is not None), gr.update(visible=next_page is not None)
query_input.submit(
fn=update_visibility,
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
search_button.click(
fn=update_visibility,
inputs=[query_input, page_state],
outputs=[output_html, page_state, prev_button, next_button]
)
app.launch() |