import gradio as gr import openai import os import json # Set OpenAI API key and base URL from environment variables openai.api_key = os.environ["OPENAI_API_KEY"] openai.base_url = os.environ["OPENAI_BASE_URL"] # Define the number of results per page and total results to generate RESULTS_PER_PAGE = 10 TOTAL_RESULTS = 30 # Generate 30 results to allow pagination def fetch_search_results(query): """Fetch search results from the LLM based on the user's query.""" if not query.strip(): return None, "Please enter a search query." prompt = f""" You are a search engine that provides informative and relevant results. For the given query '{query}', generate {TOTAL_RESULTS} search results, each with a title and a snippet that summarizes the information. Format the response as a JSON array of objects, where each object has 'title' and 'snippet' fields. Ensure the results are diverse and relevant to the query. """ try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", # Adjust model name as needed messages=[ {"role": "system", "content": "You are a helpful search engine."}, {"role": "user", "content": prompt} ], response_format="json_object" ) content = response.choices[0].message.content results = json.loads(content) # Handle different possible JSON structures if isinstance(results, dict) and "results" in results: results = results["results"] elif isinstance(results, list): pass else: return None, "Error: Unexpected JSON structure." return results, None except openai.error.OpenAIError as e: return None, f"Error: {str(e)}" except json.JSONDecodeError: return None, "Error: Failed to parse JSON response." except Exception as e: return None, f"Unexpected error: {str(e)}" def display_search_results(query, page=1): """Display search results for the given query and page number.""" results, error = fetch_search_results(query) if error: return error, None, None # Calculate pagination boundaries start_idx = (page - 1) * RESULTS_PER_PAGE end_idx = start_idx + RESULTS_PER_PAGE total_pages = (len(results) + RESULTS_PER_PAGE - 1) // RESULTS_PER_PAGE # Ensure indices are within bounds if start_idx >= len(results): return "No more results to display.", None, None paginated_results = results[start_idx:end_idx] # Format results into HTML html = """
""" html += f"

Search Results for '{query}' (Page {page} of {total_pages})

" html += "" # Add pagination controls (simulated with buttons) html += '
' # Note: Gradio doesn't support interactive JS directly in HTML outputs, # so we return page numbers for button functionality return html, page - 1 if page > 1 else None, page + 1 if page < total_pages else None def search_handler(query, page): """Handle search submission and pagination.""" html, prev_page, next_page = display_search_results(query, page) return html # Build Gradio interface with Blocks for state management with gr.Blocks(title="LLM Search Engine") as app: gr.Markdown("# LLM Search Engine") gr.Markdown("Enter a query below to search using a large language model.") query_input = gr.Textbox(label="Search Query", placeholder="Type your search here...") search_button = gr.Button("Search") output_html = gr.HTML() # Hidden state to track current page page_state = gr.State(value=1) # Define submit behavior def on_submit(query, page): return search_handler(query, page), page search_button.click( fn=on_submit, inputs=[query_input, page_state], outputs=[output_html, page_state] ) # Note: For full pagination, we simulate Previous/Next with additional buttons with gr.Row(): prev_button = gr.Button("Previous", visible=False) next_button = gr.Button("Next", visible=False) def update_page(query, page, direction): new_page = page + direction html, prev_page, next_page = display_search_results(query, new_page) return html, new_page, gr.update(visible=prev_page is not None), gr.update(visible=next_page is not None) prev_button.click( fn=lambda q, p: update_page(q, p, -1), inputs=[query_input, page_state], outputs=[output_html, page_state, prev_button, next_button] ) next_button.click( fn=lambda q, p: update_page(q, p, 1), inputs=[query_input, page_state], outputs=[output_html, page_state, prev_button, next_button] ) # Update button visibility after search search_button.click( fn=lambda q, p: (search_handler(q, p), p, gr.update(visible=p > 1), gr.update(visible=True)), inputs=[query_input, page_state], outputs=[output_html, page_state, prev_button, next_button] ) app.launch()