Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import io | |
import base64 | |
import math | |
# Function to process and visualize log probs | |
def visualize_logprobs(json_input): | |
try: | |
# Parse the JSON input | |
data = json.loads(json_input) | |
if isinstance(data, dict) and "content" in data: | |
content = data["content"] | |
elif isinstance(data, list): | |
content = data | |
else: | |
raise ValueError("Input must be a list or dictionary with 'content' key") | |
# Extract tokens and log probs, skipping None or non-finite values | |
tokens = [] | |
logprobs = [] | |
for entry in content: | |
if ( | |
"logprob" in entry | |
and entry["logprob"] is not None | |
and math.isfinite(entry["logprob"]) | |
): | |
tokens.append(entry["token"]) | |
logprobs.append(entry["logprob"]) | |
# Prepare table data, handling None in top_logprobs | |
table_data = [] | |
for entry in content: | |
# Only include entries with finite logprob and non-None top_logprobs | |
if ( | |
"logprob" in entry | |
and entry["logprob"] is not None | |
and math.isfinite(entry["logprob"]) | |
and "top_logprobs" in entry | |
and entry["top_logprobs"] is not None | |
): | |
token = entry["token"] | |
logprob = entry["logprob"] | |
top_logprobs = entry["top_logprobs"] | |
# Extract top 3 alternatives from top_logprobs | |
top_3 = sorted( | |
top_logprobs.items(), key=lambda x: x[1], reverse=True | |
)[:3] | |
row = [token, f"{logprob:.4f}"] | |
for alt_token, alt_logprob in top_3: | |
row.append(f"{alt_token}: {alt_logprob:.4f}") | |
# Pad with empty strings if fewer than 3 alternatives | |
while len(row) < 5: | |
row.append("") | |
table_data.append(row) | |
# Create the plot | |
if logprobs: | |
plt.figure(figsize=(10, 5)) | |
plt.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b") | |
plt.title("Log Probabilities of Generated Tokens") | |
plt.xlabel("Token Position") | |
plt.ylabel("Log Probability") | |
plt.grid(True) | |
plt.xticks(range(len(logprobs)), tokens, rotation=45, ha="right") | |
plt.tight_layout() | |
# Save plot to a bytes buffer | |
buf = io.BytesIO() | |
plt.savefig(buf, format="png", bbox_inches="tight") | |
buf.seek(0) | |
plt.close() | |
# Convert to base64 for Gradio | |
img_bytes = buf.getvalue() | |
img_base64 = base64.b64encode(img_bytes).decode("utf-8") | |
img_html = f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%; height: auto;">' | |
else: | |
img_html = "No finite log probabilities to plot." | |
# Create DataFrame for the table | |
df = ( | |
pd.DataFrame( | |
table_data, | |
columns=[ | |
"Token", | |
"Log Prob", | |
"Top 1 Alternative", | |
"Top 2 Alternative", | |
"Top 3 Alternative", | |
], | |
) | |
if table_data | |
else None | |
) | |
# Generate colored text | |
if logprobs: | |
min_logprob = min(logprobs) | |
max_logprob = max(logprobs) | |
if max_logprob == min_logprob: | |
normalized_probs = [0.5] * len(logprobs) | |
else: | |
normalized_probs = [ | |
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs | |
] | |
colored_text = "" | |
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)): | |
r = int(255 * (1 - norm_prob)) # Red for low confidence | |
g = int(255 * norm_prob) # Green for high confidence | |
b = 0 | |
color = f"rgb({r}, {g}, {b})" | |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>' | |
if i < len(tokens) - 1: | |
colored_text += " " | |
colored_text_html = f"<p>{colored_text}</p>" | |
else: | |
colored_text_html = "No finite log probabilities to display." | |
return img_html, df, colored_text_html | |
except Exception as e: | |
return f"Error: {str(e)}", None, None | |
# Gradio interface | |
with gr.Blocks(title="Log Probability Visualizer") as app: | |
gr.Markdown("# Log Probability Visualizer") | |
gr.Markdown( | |
"Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities." | |
) | |
json_input = gr.Textbox( | |
label="JSON Input", | |
lines=10, | |
placeholder="Paste your JSON or Python dict here...", | |
) | |
plot_output = gr.HTML(label="Log Probability Plot") | |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") | |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)") | |
btn = gr.Button("Visualize") | |
btn.click( | |
fn=visualize_logprobs, | |
inputs=json_input, | |
outputs=[plot_output, table_output, text_output], | |
) | |
app.launch() |