codelion's picture
Update app.py
6b2ca38 verified
raw
history blame
11.9 kB
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
import numpy as np
import plotly.graph_objects as go
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
# Try to parse as JSON first
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
try:
# If JSON fails, try to parse as Python literal (e.g., with single quotes)
data = ast.literal_eval(json_input)
logger.debug("Successfully parsed as Python literal")
# Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
def dict_to_json(obj):
if isinstance(obj, dict):
return {str(k): dict_to_json(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [dict_to_json(item) for item in obj]
else:
return obj
converted_data = dict_to_json(data)
logger.debug("Converted to JSON-compatible format")
return converted_data
except (SyntaxError, ValueError) as e:
logger.error("Python literal parsing failed: %s", str(e))
raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")
# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
if value is None:
return None
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Failed to convert string '%s' to float", value)
return None
if isinstance(value, (int, float)):
return float(value)
return None
# Function to create an empty Plotly figure
def create_empty_figure(title):
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
# Function to process and visualize log probs with interactive Plotly plots
def visualize_logprobs(json_input):
try:
# Parse the input (handles both JSON and Python dictionaries)
data = parse_input(json_input)
# Ensure data is a list or dictionary with 'content'
if isinstance(data, dict) and "content" in data:
content = data["content"]
elif isinstance(data, list):
content = data
else:
raise ValueError("Input must be a list or dictionary with 'content' key")
# Extract tokens and log probs, skipping None or non-finite values with fixed filter of -100000
tokens = []
logprobs = []
top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives)
for entry in content:
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and logprob >= -100000:
tokens.append(entry["token"])
logprobs.append(logprob)
# Get top_logprobs, default to empty dict if None
top_probs = entry.get("top_logprobs", {})
# Ensure all values in top_logprobs are floats
finite_top_probs = {}
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs[key] = float_value
# Get the top 3 log probs (including the selected token)
all_probs = {entry["token"]: logprob} # Add the selected token's logprob
all_probs.update(finite_top_probs) # Add alternatives
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest)
top_alternatives.append(top_3)
else:
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
# Check if there's valid data after filtering
if not logprobs or not tokens:
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top 3 Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
# 1. Main Log Probability Plot (Interactive Plotly)
main_fig = go.Figure()
main_fig.add_trace(go.Scatter(x=list(range(len(logprobs))), y=logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
main_fig.update_layout(
title="Log Probabilities of Generated Tokens",
xaxis_title="Token Position",
yaxis_title="Log Probability",
hovermode="closest",
clickmode='event+select'
)
main_fig.update_traces(
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, prob) in enumerate(zip(tokens, logprobs))],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# 2. Probability Drop Analysis (Interactive Plotly)
if len(logprobs) < 2:
drops_fig = create_empty_figure("Significant Probability Drops")
else:
drops = [logprobs[i+1] - logprobs[i] for i in range(len(logprobs)-1)]
drops_fig = go.Figure()
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
drops_fig.update_layout(
title="Significant Probability Drops",
xaxis_title="Token Position",
yaxis_title="Log Probability Drop",
hovermode="closest",
clickmode='event+select'
)
drops_fig.update_traces(
customdata=[f"Drop: {drop:.4f}, From: {tokens[i]} to {tokens[i+1]}, Position: {i}" for i, drop in enumerate(drops)],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# Create DataFrame for the table
table_data = []
for i, entry in enumerate(content):
logprob = ensure_float(entry.get("logprob", None))
if logprob is not None and math.isfinite(logprob) and logprob >= -100000 and "top_logprobs" in entry and entry["top_logprobs"] is not None:
token = entry["token"]
top_logprobs = entry["top_logprobs"]
# Ensure all values in top_logprobs are floats
finite_top_logprobs = {}
for key, value in top_logprobs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_logprobs[key] = float_value
# Extract top 3 alternatives from top_logprobs
top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in top_3:
row.append(f"{alt_token}: {alt_logprob:.4f}")
while len(row) < 5:
row.append("")
table_data.append(row)
df = (
pd.DataFrame(
table_data,
columns=[
"Token",
"Log Prob",
"Top 1 Alternative",
"Top 2 Alternative",
"Top 3 Alternative",
],
)
if table_data
else None
)
# Generate colored text
if logprobs:
min_logprob = min(logprobs)
max_logprob = max(logprobs)
if max_logprob == min_logprob:
normalized_probs = [0.5] * len(logprobs)
else:
normalized_probs = [
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
]
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
r = int(255 * (1 - norm_prob)) # Red for low confidence
g = int(255 * norm_prob) # Green for high confidence
b = 0
color = f"rgb({r}, {g}, {b})"
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(tokens) - 1:
colored_text += " "
colored_text_html = f"<p>{colored_text}</p>"
else:
colored_text_html = "No finite log probabilities to display."
# Top 3 Token Log Probabilities (Interactive Plotly)
alt_viz_fig = create_empty_figure("Top 3 Token Log Probabilities") if not logprobs or not top_alternatives else go.Figure()
if logprobs and top_alternatives:
for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
for j, (alt_tok, prob) in enumerate(probs):
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red'][j]))
alt_viz_fig.update_layout(
title="Top 3 Token Log Probabilities",
xaxis_title="Token (Position)",
yaxis_title="Log Probability",
barmode='stack',
hovermode="closest",
clickmode='event+select'
)
alt_viz_fig.update_traces(
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, alts) in enumerate(zip(tokens, top_alternatives)) for alt, prob in alts],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top 3 Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
# Gradio interface with improved layout
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown(
"Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Fixed filter ≥ -100000, 1000 tokens per page."
)
with gr.Row():
json_input = gr.Textbox(
label="JSON Input",
lines=10,
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
)
with gr.Row():
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
drops_output = gr.Plot(label="Probability Drops (Click for Details)")
with gr.Row():
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
alt_viz_output = gr.Plot(label="Top 3 Token Log Probabilities (Click for Details)")
with gr.Row():
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
btn = gr.Button("Visualize")
btn.click(
fn=visualize_logprobs,
inputs=[json_input],
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output],
)
app.launch()