Spaces:
Running
Running
import gradio as gr | |
import json | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import io | |
import base64 | |
import math | |
import ast | |
import logging | |
import numpy as np | |
import plotly.graph_objects as go | |
import asyncio | |
import anyio | |
# Set up logging | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
# Function to safely parse JSON or Python dictionary input | |
def parse_input(json_input): | |
logger.debug("Attempting to parse input: %s", json_input) | |
try: | |
# Try to parse as JSON first | |
data = json.loads(json_input) | |
logger.debug("Successfully parsed as JSON") | |
return data | |
except json.JSONDecodeError as e: | |
logger.error("JSON parsing failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input) | |
raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") and the format matches JSON (e.g., {{\"content\": [...]}}).") | |
# Function to ensure a value is a float, converting from string if necessary | |
def ensure_float(value): | |
if value is None: | |
logger.debug("Replacing None logprob with 0.0") | |
return 0.0 # Default to 0.0 for None to ensure visualization | |
if isinstance(value, str): | |
try: | |
return float(value) | |
except ValueError: | |
logger.error("Failed to convert string '%s' to float", value) | |
return 0.0 # Default to 0.0 for invalid strings | |
if isinstance(value, (int, float)): | |
return float(value) | |
return 0.0 # Default for any other type | |
# Function to get or generate a token value (default to "Unknown" if missing) | |
def get_token(entry): | |
token = entry.get("token", "Unknown") | |
if token == "Unknown": | |
logger.warning("Missing 'token' key for entry: %s, using 'Unknown'", entry) | |
return token | |
# Function to create an empty Plotly figure | |
def create_empty_figure(title): | |
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False) | |
# Precompute the next chunk asynchronously | |
async def precompute_chunk(json_input, chunk_size, current_chunk): | |
try: | |
data = parse_input(json_input) | |
content = data.get("content", []) if isinstance(data, dict) else data | |
if not isinstance(content, list): | |
raise ValueError("Content must be a list of entries") | |
tokens = [] | |
logprobs = [] | |
top_alternatives = [] | |
for entry in content: | |
if not isinstance(entry, dict): | |
logger.warning("Skipping non-dictionary entry: %s", entry) | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000: # Include all entries with default 0.0 | |
tokens.append(get_token(entry)) | |
logprobs.append(logprob) | |
top_probs = entry.get("top_logprobs", {}) | |
if top_probs is None: | |
logger.debug("top_logprobs is None for token: %s, using empty dict", get_token(entry)) | |
top_probs = {} | |
finite_top_probs = [] | |
for key, value in top_probs.items(): | |
float_value = ensure_float(value) | |
if float_value is not None and math.isfinite(float_value): | |
finite_top_probs.append((key, float_value)) | |
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) | |
top_alternatives.append(sorted_probs) | |
if not tokens or not logprobs: | |
return None, None, None | |
next_chunk = current_chunk + 1 | |
start_idx = next_chunk * chunk_size | |
end_idx = min((next_chunk + 1) * chunk_size, len(tokens)) | |
if start_idx >= len(tokens): | |
return None, None, None | |
paginated_tokens = tokens[start_idx:end_idx] | |
paginated_logprobs = logprobs[start_idx:end_idx] | |
paginated_alternatives = top_alternatives[start_idx:end_idx] | |
return paginated_tokens, paginated_logprobs, paginated_alternatives | |
except Exception as e: | |
logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e)) | |
return None, None, None | |
# Function to process and visualize a chunk of log probs with dynamic top_logprobs | |
def visualize_logprobs(json_input, chunk=0, chunk_size=1000): | |
try: | |
# Parse the input (handles JSON only) | |
data = parse_input(json_input) | |
# Ensure data is a dictionary with 'content' key containing a list | |
if isinstance(data, dict) and "content" in data: | |
content = data["content"] | |
if not isinstance(content, list): | |
raise ValueError("Content must be a list of entries") | |
elif isinstance(data, list): | |
content = data # Handle direct list input (though only JSON is expected) | |
else: | |
raise ValueError("Input must be a dictionary with 'content' key or a list of entries") | |
# Extract tokens, log probs, and top alternatives, skipping non-finite values with fixed filter of -100000 | |
tokens = [] | |
logprobs = [] | |
top_alternatives = [] # List to store all top_logprobs (dynamic length) | |
for entry in content: | |
if not isinstance(entry, dict): | |
logger.warning("Skipping non-dictionary entry: %s", entry) | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000: # Include all entries with default 0.0 | |
tokens.append(get_token(entry)) | |
logprobs.append(logprob) | |
# Get top_logprobs, default to empty dict if None | |
top_probs = entry.get("top_logprobs", {}) | |
if top_probs is None: | |
logger.debug("top_logprobs is None for token: %s, using empty dict", get_token(entry)) | |
top_probs = {} # Default to empty dict for None | |
# Ensure all values in top_logprobs are floats and create a list of tuples | |
finite_top_probs = [] | |
for key, value in top_probs.items(): | |
float_value = ensure_float(value) | |
if float_value is not None and math.isfinite(float_value): | |
finite_top_probs.append((key, float_value)) | |
# Sort by log probability (descending) to get all alternatives | |
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) | |
top_alternatives.append(sorted_probs) # Store all alternatives, dynamic length | |
else: | |
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None))) | |
# Check if there's valid data after filtering | |
if not logprobs or not tokens: | |
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) | |
# Paginate data for chunks of 1,000 tokens | |
total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size) | |
start_idx = chunk * chunk_size | |
end_idx = min((chunk + 1) * chunk_size, len(logprobs)) | |
paginated_tokens = tokens[start_idx:end_idx] | |
paginated_logprobs = logprobs[start_idx:end_idx] | |
paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else [] | |
# 1. Main Log Probability Plot (Interactive Plotly) | |
main_fig = go.Figure() | |
main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue'))) | |
main_fig.update_layout( | |
title="Log Probabilities of Generated Tokens (Chunk %d)" % (chunk + 1), | |
xaxis_title="Token Position (within chunk)", | |
yaxis_title="Log Probability", | |
hovermode="closest", | |
clickmode='event+select' | |
) | |
main_fig.update_traces( | |
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], | |
hovertemplate='<b>%{customdata}</b><extra></extra>' | |
) | |
# 2. Probability Drop Analysis (Interactive Plotly) | |
if len(paginated_logprobs) < 2: | |
drops_fig = create_empty_figure("Significant Probability Drops (Chunk %d)" % (chunk + 1)) | |
else: | |
drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)] | |
drops_fig = go.Figure() | |
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red')) | |
drops_fig.update_layout( | |
title="Significant Probability Drops (Chunk %d)" % (chunk + 1), | |
xaxis_title="Token Position (within chunk)", | |
yaxis_title="Log Probability Drop", | |
hovermode="closest", | |
clickmode='event+select' | |
) | |
drops_fig.update_traces( | |
customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)], | |
hovertemplate='<b>%{customdata}</b><extra></extra>' | |
) | |
# Create DataFrame for the table with dynamic top_logprobs | |
table_data = [] | |
max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0 | |
for i, entry in enumerate(content[start_idx:end_idx]): | |
if not isinstance(entry, dict): | |
continue | |
logprob = ensure_float(entry.get("logprob", None)) | |
if logprob >= -100000 and "top_logprobs" in entry: # Include all entries with default 0.0 | |
token = get_token(entry) | |
top_logprobs = entry.get("top_logprobs", {}) | |
if top_logprobs is None: | |
logger.debug("top_logprobs is None for token: %s, using empty dict", token) | |
top_logprobs = {} # Default to empty dict for None | |
# Ensure all values in top_logprobs are floats | |
finite_top_logprobs = [] | |
for key, value in top_logprobs.items(): | |
float_value = ensure_float(value) | |
if float_value is not None and math.isfinite(float_value): | |
finite_top_logprobs.append((key, float_value)) | |
# Sort by log probability (descending) | |
sorted_probs = sorted(finite_top_logprobs, key=lambda x: x[1], reverse=True) | |
row = [token, f"{logprob:.4f}"] | |
for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives | |
row.append(f"{alt_token}: {alt_logprob:.4f}") | |
# Pad with empty strings if fewer alternatives than max | |
while len(row) < 2 + max_alternatives: | |
row.append("") | |
table_data.append(row) | |
df = ( | |
pd.DataFrame( | |
table_data, | |
columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)], | |
) | |
if table_data | |
else None | |
) | |
# Generate colored text (for the current chunk) | |
if paginated_logprobs: | |
min_logprob = min(paginated_logprobs) | |
max_logprob = max(paginated_logprobs) | |
if max_logprob == min_logprob: | |
normalized_probs = [0.5] * len(paginated_logprobs) | |
else: | |
normalized_probs = [ | |
(lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs | |
] | |
colored_text = "" | |
for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)): | |
r = int(255 * (1 - norm_prob)) # Red for low confidence | |
g = int(255 * norm_prob) # Green for high confidence | |
b = 0 | |
color = f"rgb({r}, {g}, {b})" | |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>' | |
if i < len(paginated_tokens) - 1: | |
colored_text += " " | |
colored_text_html = f"<p>{colored_text}</p>" | |
else: | |
colored_text_html = "No tokens to display in this chunk." | |
# Top Token Log Probabilities (Interactive Plotly, dynamic length, for the current chunk) | |
alt_viz_fig = create_empty_figure("Top Token Log Probabilities (Chunk %d)" % (chunk + 1)) if not paginated_logprobs or not paginated_alternatives else go.Figure() | |
if paginated_logprobs and paginated_alternatives: | |
for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)): | |
for j, (alt_tok, prob) in enumerate(probs): | |
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)])) | |
alt_viz_fig.update_layout( | |
title="Top Token Log Probabilities (Chunk %d)" % (chunk + 1), | |
xaxis_title="Token (Position)", | |
yaxis_title="Log Probability", | |
barmode='stack', | |
hovermode="closest", | |
clickmode='event+select' | |
) | |
alt_viz_fig.update_traces( | |
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts], | |
hovertemplate='<b>%{customdata}</b><extra></extra>' | |
) | |
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig, total_chunks, chunk) | |
except Exception as e: | |
logger.error("Visualization failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input) | |
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) | |
# Gradio interface with chunked visualization and proactive precomputation | |
with gr.Blocks(title="Log Probability Visualizer") as app: | |
gr.Markdown("# Log Probability Visualizer") | |
gr.Markdown( | |
"Paste your JSON log prob data below to visualize tokens in chunks of 1,000. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields. Next chunk is precomputed proactively." | |
) | |
with gr.Row(): | |
json_input = gr.Textbox( | |
label="JSON Input", | |
lines=10, | |
placeholder="Paste your JSON (e.g., {\"content\": [{\"bytes\": [44], \"logprob\": 0.0, \"token\": \",\", \"top_logprobs\": {\" so\": -13.8046875, \".\": -13.8046875, \",\": -13.640625}}]}).", | |
) | |
chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0) | |
with gr.Row(): | |
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)") | |
drops_output = gr.Plot(label="Probability Drops (Click for Details)") | |
with gr.Row(): | |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") | |
alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)") | |
with gr.Row(): | |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)") | |
with gr.Row(): | |
prev_btn = gr.Button("Previous Chunk") | |
next_btn = gr.Button("Next Chunk") | |
total_chunks_output = gr.Number(label="Total Chunks", interactive=False) | |
# Precomputed next chunk state (hidden) | |
precomputed_next = gr.State(value=None) | |
btn = gr.Button("Visualize") | |
btn.click( | |
fn=visualize_logprobs, | |
inputs=[json_input, chunk], | |
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], | |
) | |
# Precompute next chunk proactively when on current chunk | |
async def precompute_next_chunk(json_input, current_chunk, precomputed_next): | |
if precomputed_next is not None: | |
return precomputed_next # Use cached precomputed chunk if available | |
next_tokens, next_logprobs, next_alternatives = await precompute_chunk(json_input, 1000, current_chunk) | |
if next_tokens is None or next_logprobs is None or next_alternatives is None: | |
return None | |
return (next_tokens, next_logprobs, next_alternatives) | |
# Update chunk on button clicks | |
def update_chunk(json_input, current_chunk, action, precomputed_next=None): | |
total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks | |
if action == "prev" and current_chunk > 0: | |
current_chunk -= 1 | |
elif action == "next" and current_chunk < total_chunks - 1: | |
current_chunk += 1 | |
# If precomputed next chunk exists, use it; otherwise, compute it | |
if precomputed_next: | |
next_tokens, next_logprobs, next_alternatives = precomputed_next | |
if next_tokens and next_logprobs and next_alternatives: | |
logger.debug("Using precomputed next chunk for chunk %d", current_chunk) | |
return visualize_logprobs(json_input, current_chunk) | |
return visualize_logprobs(json_input, current_chunk) | |
prev_btn.click( | |
fn=update_chunk, | |
inputs=[json_input, chunk, gr.State(value="prev"), precomputed_next], | |
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], | |
) | |
next_btn.click( | |
fn=update_chunk, | |
inputs=[json_input, chunk, gr.State(value="next"), precomputed_next], | |
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], | |
) | |
# Trigger precomputation when chunk changes (via button clicks or initial load) | |
def trigger_precomputation(json_input, current_chunk): | |
asyncio.create_task(precompute_next_chunk(json_input, current_chunk, None)) | |
return gr.update(value=current_chunk) | |
# Use a dummy event to trigger precomputation on chunk change (simplified for Gradio) | |
chunk.change( | |
fn=trigger_precomputation, | |
inputs=[json_input, chunk], | |
outputs=[chunk], | |
) | |
app.launch() |