codelion's picture
Update app.py
b8e291e verified
raw
history blame
12.5 kB
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import math
import ast
import logging
import numpy as np
import plotly.graph_objects as go
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Function to safely parse JSON or Python dictionary input
def parse_input(json_input):
logger.debug("Attempting to parse input: %s", json_input)
try:
# Try to parse as JSON first
data = json.loads(json_input)
logger.debug("Successfully parsed as JSON")
return data
except json.JSONDecodeError as e:
logger.error("JSON parsing failed: %s", str(e))
try:
# If JSON fails, try to parse as Python literal (e.g., with single quotes)
data = ast.literal_eval(json_input)
logger.debug("Successfully parsed as Python literal")
# Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes)
def dict_to_json(obj):
if isinstance(obj, dict):
return {str(k): dict_to_json(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [dict_to_json(item) for item in obj]
else:
return obj
converted_data = dict_to_json(data)
logger.debug("Converted to JSON-compatible format")
return converted_data
except (SyntaxError, ValueError) as e:
logger.error("Python literal parsing failed: %s", str(e))
raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.")
# Function to ensure a value is a float, converting from string if necessary
def ensure_float(value):
if value is None:
logger.debug("Replacing None logprob with 0.0")
return 0.0 # Default to 0.0 for None to ensure visualization
if isinstance(value, str):
try:
return float(value)
except ValueError:
logger.error("Failed to convert string '%s' to float", value)
return 0.0 # Default to 0.0 for invalid strings
if isinstance(value, (int, float)):
return float(value)
return 0.0 # Default for any other type
# Function to create an empty Plotly figure
def create_empty_figure(title):
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
# Function to process and visualize the full log probs with dynamic top_logprobs, handling None
def visualize_logprobs(json_input):
try:
# Parse the input (handles both JSON and Python dictionaries)
data = parse_input(json_input)
# Ensure data is a list or dictionary with 'content'
if isinstance(data, dict) and "content" in data:
content = data["content"]
elif isinstance(data, list):
content = data
else:
raise ValueError("Input must be a list or dictionary with 'content' key")
# Extract tokens, log probs, and top alternatives, skipping non-finite values with fixed filter of -100000
tokens = []
logprobs = []
top_alternatives = [] # List to store all top_logprobs (dynamic length)
for entry in content:
logprob = ensure_float(entry.get("logprob", None))
if math.isfinite(logprob) and logprob >= -100000:
tokens.append(entry["token"])
logprobs.append(logprob)
# Get top_logprobs, default to empty dict if None
top_probs = entry.get("top_logprobs", {})
if top_probs is None:
logger.debug("top_logprobs is None for token: %s, using empty dict", entry["token"])
top_probs = {} # Default to empty dict for None
# Ensure all values in top_logprobs are floats and create a list of tuples
finite_top_probs = []
for key, value in top_probs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_probs.append((key, float_value))
# Sort by log probability (descending) to get all alternatives
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
top_alternatives.append(sorted_probs) # Store all alternatives, dynamic length
else:
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
# Check if there's valid data after filtering
if not logprobs or not tokens:
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
# 1. Main Log Probability Plot (Interactive Plotly)
main_fig = go.Figure()
main_fig.add_trace(go.Scatter(x=list(range(len(logprobs))), y=logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
main_fig.update_layout(
title="Log Probabilities of Generated Tokens",
xaxis_title="Token Position",
yaxis_title="Log Probability",
hovermode="closest",
clickmode='event+select'
)
main_fig.update_traces(
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, prob) in enumerate(zip(tokens, logprobs))],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# 2. Probability Drop Analysis (Interactive Plotly)
if len(logprobs) < 2:
drops_fig = create_empty_figure("Significant Probability Drops")
else:
drops = [logprobs[i+1] - logprobs[i] for i in range(len(logprobs)-1)]
drops_fig = go.Figure()
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
drops_fig.update_layout(
title="Significant Probability Drops",
xaxis_title="Token Position",
yaxis_title="Log Probability Drop",
hovermode="closest",
clickmode='event+select'
)
drops_fig.update_traces(
customdata=[f"Drop: {drop:.4f}, From: {tokens[i]} to {tokens[i+1]}, Position: {i}" for i, drop in enumerate(drops)],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
# Create DataFrame for the table with dynamic top_logprobs
table_data = []
max_alternatives = max(len(alts) for alts in top_alternatives) if top_alternatives else 0
for i, entry in enumerate(content):
logprob = ensure_float(entry.get("logprob", None))
if math.isfinite(logprob) and logprob >= -100000 and "top_logprobs" in entry:
token = entry["token"]
top_logprobs = entry.get("top_logprobs", {})
if top_logprobs is None:
logger.debug("top_logprobs is None for token: %s, using empty dict", token)
top_logprobs = {} # Default to empty dict for None
# Ensure all values in top_logprobs are floats
finite_top_logprobs = []
for key, value in top_logprobs.items():
float_value = ensure_float(value)
if float_value is not None and math.isfinite(float_value):
finite_top_logprobs.append((key, float_value))
# Sort by log probability (descending)
sorted_probs = sorted(finite_top_logprobs, key=lambda x: x[1], reverse=True)
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives
row.append(f"{alt_token}: {alt_logprob:.4f}")
# Pad with empty strings if fewer alternatives than max
while len(row) < 2 + max_alternatives:
row.append("")
table_data.append(row)
df = (
pd.DataFrame(
table_data,
columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)],
)
if table_data
else None
)
# Generate colored text
if logprobs:
min_logprob = min(logprobs)
max_logprob = max(logprobs)
if max_logprob == min_logprob:
normalized_probs = [0.5] * len(logprobs)
else:
normalized_probs = [
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
]
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
r = int(255 * (1 - norm_prob)) # Red for low confidence
g = int(255 * norm_prob) # Green for high confidence
b = 0
color = f"rgb({r}, {g}, {b})"
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(tokens) - 1:
colored_text += " "
colored_text_html = f"<p>{colored_text}</p>"
else:
colored_text_html = "No finite log probabilities to display."
# Top Token Log Probabilities (Interactive Plotly, dynamic length)
alt_viz_fig = create_empty_figure("Top Token Log Probabilities") if not logprobs or not top_alternatives else go.Figure()
if logprobs and top_alternatives:
for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
for j, (alt_tok, prob) in enumerate(probs):
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)]))
alt_viz_fig.update_layout(
title="Top Token Log Probabilities",
xaxis_title="Token (Position)",
yaxis_title="Log Probability",
barmode='stack',
hovermode="closest",
clickmode='event+select'
)
alt_viz_fig.update_traces(
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, alts) in enumerate(zip(tokens, top_alternatives)) for alt, prob in alts],
hovertemplate='<b>%{customdata}</b><extra></extra>'
)
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig)
except Exception as e:
logger.error("Visualization failed: %s", str(e))
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
# Gradio interface with full dataset visualization and dynamic top_logprobs
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown(
"Paste your JSON or Python dictionary log prob data below to visualize all tokens at once. Fixed filter ≥ -100000, dynamic number of top_logprobs."
)
with gr.Row():
json_input = gr.Textbox(
label="JSON Input",
lines=10,
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
)
with gr.Row():
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
drops_output = gr.Plot(label="Probability Drops (Click for Details)")
with gr.Row():
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")
with gr.Row():
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
btn = gr.Button("Visualize")
btn.click(
fn=visualize_logprobs,
inputs=[json_input],
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output],
)
app.launch()