codelion's picture
Update app.py
c28bdaa verified
raw
history blame
5.98 kB
import gradio as gr
import json
import matplotlib.pyplot as plt
import pandas as pd
import io
import base64
import ast
import math
# Function to process and visualize log probs
def visualize_logprobs(json_input):
try:
# Try to parse as JSON first
try:
data = json.loads(json_input)
except json.JSONDecodeError:
# If JSON fails, try to parse as Python literal (e.g., with single quotes)
data = ast.literal_eval(json_input)
# Ensure data is a list or dictionary with 'content'
if isinstance(data, dict) and 'content' in data:
content = data['content']
elif isinstance(data, list):
content = data
else:
raise ValueError("Input must be a list or dictionary with 'content' key")
# Extract tokens and log probs, skipping None values and handling non-finite values
tokens = []
logprobs = []
for entry in content:
if entry['logprob'] is not None and math.isfinite(entry['logprob']):
tokens.append(entry['token'])
logprobs.append(entry['logprob'])
# Prepare data for the table
table_data = []
for entry in content:
if entry['logprob'] is not None and math.isfinite(entry['logprob']):
token = entry['token']
logprob = entry['logprob']
top_logprobs = entry['top_logprobs'] or {}
# Filter out non-finite (e.g., -inf, inf, nan) log probs from top_logprobs
finite_top_logprobs = {k: v for k, v in top_logprobs.items() if math.isfinite(v)}
# Extract top 3 finite alternatives, sorted by log prob (most probable first)
top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
row = [token, f"{logprob:.4f}"]
for alt_token, alt_logprob in top_3:
row.append(f"{alt_token}: {alt_logprob:.4f}")
# Pad with empty strings if fewer than 3 alternatives
while len(row) < 5:
row.append("")
table_data.append(row)
# Create the plot (only for finite log probs)
if logprobs:
plt.figure(figsize=(10, 5))
plt.plot(range(len(logprobs)), logprobs, marker='o', linestyle='-', color='b')
plt.title("Log Probabilities of Generated Tokens")
plt.xlabel("Token Position")
plt.ylabel("Log Probability")
plt.grid(True)
plt.xticks(range(len(logprobs)), tokens, rotation=45, ha='right')
plt.tight_layout()
# Save plot to a bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close()
# Convert buffer to base64 for Gradio
img_bytes = buf.getvalue()
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
img_html = f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%; height: auto;">'
else:
img_html = "No finite log probabilities to plot."
# Create a DataFrame for the table
df = pd.DataFrame(
table_data,
columns=["Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative"]
) if table_data else None
# Generate colored text based on log probabilities
if logprobs:
# Normalize log probs to [0, 1] for color scaling (0 = most uncertain, 1 = most confident)
min_logprob = min(logprobs)
max_logprob = max(logprobs)
if max_logprob == min_logprob:
normalized_probs = [0.5] * len(logprobs) # Avoid division by zero
else:
normalized_probs = [(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs]
# Create HTML for colored text
colored_text = ""
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
# Map normalized probability to RGB color (green for high confidence, red for low)
r = int(255 * (1 - norm_prob)) # Red increases as uncertainty increases
g = int(255 * norm_prob) # Green decreases as uncertainty increases
b = 0 # Blue stays 0 for simplicity
color = f'rgb({r}, {g}, {b})'
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
if i < len(tokens) - 1:
colored_text += " " # Add space between tokens
colored_text_html = f'<p>{colored_text}</p>'
else:
colored_text_html = "No finite log probabilities to display."
return img_html, df, colored_text_html
except Exception as e:
return f"Error: {str(e)}", None, None
# Gradio interface
with gr.Blocks(title="Log Probability Visualizer") as app:
gr.Markdown("# Log Probability Visualizer")
gr.Markdown("Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities.")
# Input
json_input = gr.Textbox(label="JSON Input", lines=10, placeholder="Paste your JSON or Python dict here...")
# Outputs
plot_output = gr.HTML(label="Log Probability Plot")
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
# Button to trigger visualization
btn = gr.Button("Visualize")
btn.click(
fn=visualize_logprobs,
inputs=json_input,
outputs=[plot_output, table_output, text_output]
)
# Launch the app
app.launch()