Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
|
|
2 |
import json
|
3 |
import matplotlib.pyplot as plt
|
4 |
import pandas as pd
|
5 |
-
|
|
|
6 |
|
7 |
# Function to process and visualize log probs
|
8 |
def visualize_logprobs(json_input):
|
@@ -21,7 +22,7 @@ def visualize_logprobs(json_input):
|
|
21 |
token = entry['token']
|
22 |
logprob = entry['logprob']
|
23 |
top_logprobs = entry['top_logprobs']
|
24 |
-
# Extract top 3 alternatives
|
25 |
top_3 = sorted(top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
|
26 |
row = [token, f"{logprob:.4f}"]
|
27 |
for alt_token, alt_logprob in top_3:
|
@@ -41,19 +42,24 @@ def visualize_logprobs(json_input):
|
|
41 |
plt.xticks(range(len(logprobs)), tokens, rotation=45, ha='right')
|
42 |
plt.tight_layout()
|
43 |
|
44 |
-
# Save plot to a buffer
|
45 |
-
|
46 |
-
plt.savefig(
|
47 |
-
|
48 |
plt.close()
|
49 |
|
|
|
|
|
|
|
|
|
|
|
50 |
# Create a DataFrame for the table
|
51 |
df = pd.DataFrame(
|
52 |
table_data,
|
53 |
columns=["Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative"]
|
54 |
)
|
55 |
|
56 |
-
return
|
57 |
|
58 |
except Exception as e:
|
59 |
return f"Error: {str(e)}", None
|
@@ -67,7 +73,7 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
67 |
json_input = gr.Textbox(label="JSON Input", lines=10, placeholder="Paste your JSON here...")
|
68 |
|
69 |
# Outputs
|
70 |
-
plot_output = gr.
|
71 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
72 |
|
73 |
# Button to trigger visualization
|
|
|
2 |
import json
|
3 |
import matplotlib.pyplot as plt
|
4 |
import pandas as pd
|
5 |
+
import io
|
6 |
+
import base64
|
7 |
|
8 |
# Function to process and visualize log probs
|
9 |
def visualize_logprobs(json_input):
|
|
|
22 |
token = entry['token']
|
23 |
logprob = entry['logprob']
|
24 |
top_logprobs = entry['top_logprobs']
|
25 |
+
# Extract top 3 alternatives, sorted by log prob (most probable first)
|
26 |
top_3 = sorted(top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3]
|
27 |
row = [token, f"{logprob:.4f}"]
|
28 |
for alt_token, alt_logprob in top_3:
|
|
|
42 |
plt.xticks(range(len(logprobs)), tokens, rotation=45, ha='right')
|
43 |
plt.tight_layout()
|
44 |
|
45 |
+
# Save plot to a bytes buffer
|
46 |
+
buf = io.BytesIO()
|
47 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
48 |
+
buf.seek(0)
|
49 |
plt.close()
|
50 |
|
51 |
+
# Convert buffer to base64 for Gradio
|
52 |
+
img_bytes = buf.getvalue()
|
53 |
+
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
54 |
+
img_html = f'<img src="data:image/png;base64,{img_base64}" style="max-width: 100%; height: auto;">'
|
55 |
+
|
56 |
# Create a DataFrame for the table
|
57 |
df = pd.DataFrame(
|
58 |
table_data,
|
59 |
columns=["Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative"]
|
60 |
)
|
61 |
|
62 |
+
return img_html, df
|
63 |
|
64 |
except Exception as e:
|
65 |
return f"Error: {str(e)}", None
|
|
|
73 |
json_input = gr.Textbox(label="JSON Input", lines=10, placeholder="Paste your JSON here...")
|
74 |
|
75 |
# Outputs
|
76 |
+
plot_output = gr.HTML(label="Log Probability Plot")
|
77 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
78 |
|
79 |
# Button to trigger visualization
|