codelion commited on
Commit
71e7643
·
verified ·
1 Parent(s): 9ba1537

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -104,7 +104,7 @@ async def precompute_chunk(json_input, chunk_size, current_chunk):
104
  return None, None, None
105
 
106
  # Function to process and visualize a chunk of log probs with dynamic top_logprobs
107
- def visualize_logprobs(json_input, chunk=0, chunk_size=1000):
108
  try:
109
  # Parse the input (handles JSON only)
110
  data = parse_input(json_input)
@@ -152,7 +152,7 @@ def visualize_logprobs(json_input, chunk=0, chunk_size=1000):
152
  if not logprobs or not tokens:
153
  return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
154
 
155
- # Paginate data for chunks of 1,000 tokens
156
  total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size)
157
  start_idx = chunk * chunk_size
158
  end_idx = min((chunk + 1) * chunk_size, len(logprobs))
@@ -285,7 +285,7 @@ def visualize_logprobs(json_input, chunk=0, chunk_size=1000):
285
  with gr.Blocks(title="Log Probability Visualizer") as app:
286
  gr.Markdown("# Log Probability Visualizer")
287
  gr.Markdown(
288
- "Paste your JSON log prob data below to visualize tokens in chunks of 1,000. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields. Next chunk is precomputed proactively."
289
  )
290
 
291
  with gr.Row():
@@ -326,7 +326,7 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
326
  async def precompute_next_chunk(json_input, current_chunk, precomputed_next):
327
  if precomputed_next is not None:
328
  return precomputed_next # Use cached precomputed chunk if available
329
- next_tokens, next_logprobs, next_alternatives = await precompute_chunk(json_input, 1000, current_chunk)
330
  if next_tokens is None or next_logprobs is None or next_alternatives is None:
331
  return None
332
  return (next_tokens, next_logprobs, next_alternatives)
 
104
  return None, None, None
105
 
106
  # Function to process and visualize a chunk of log probs with dynamic top_logprobs
107
+ def visualize_logprobs(json_input, chunk=0, chunk_size=100):
108
  try:
109
  # Parse the input (handles JSON only)
110
  data = parse_input(json_input)
 
152
  if not logprobs or not tokens:
153
  return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
154
 
155
+ # Paginate data for chunks of 100 tokens
156
  total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size)
157
  start_idx = chunk * chunk_size
158
  end_idx = min((chunk + 1) * chunk_size, len(logprobs))
 
285
  with gr.Blocks(title="Log Probability Visualizer") as app:
286
  gr.Markdown("# Log Probability Visualizer")
287
  gr.Markdown(
288
+ "Paste your JSON log prob data below to visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields. Next chunk is precomputed proactively."
289
  )
290
 
291
  with gr.Row():
 
326
  async def precompute_next_chunk(json_input, current_chunk, precomputed_next):
327
  if precomputed_next is not None:
328
  return precomputed_next # Use cached precomputed chunk if available
329
+ next_tokens, next_logprobs, next_alternatives = await precompute_chunk(json_input, 100, current_chunk)
330
  if next_tokens is None or next_logprobs is None or next_alternatives is None:
331
  return None
332
  return (next_tokens, next_logprobs, next_alternatives)