Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import matplotlib.pyplot as plt
|
|
4 |
import pandas as pd
|
5 |
import io
|
6 |
import base64
|
7 |
-
import ast
|
8 |
|
9 |
# Function to process and visualize log probs
|
10 |
def visualize_logprobs(json_input):
|
@@ -64,10 +64,34 @@ def visualize_logprobs(json_input):
|
|
64 |
columns=["Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative"]
|
65 |
)
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
except Exception as e:
|
70 |
-
return f"Error: {str(e)}", None
|
71 |
|
72 |
# Gradio interface
|
73 |
with gr.Blocks(title="Log Probability Visualizer") as app:
|
@@ -80,13 +104,14 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
80 |
# Outputs
|
81 |
plot_output = gr.HTML(label="Log Probability Plot")
|
82 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
|
|
83 |
|
84 |
# Button to trigger visualization
|
85 |
btn = gr.Button("Visualize")
|
86 |
btn.click(
|
87 |
fn=visualize_logprobs,
|
88 |
inputs=json_input,
|
89 |
-
outputs=[plot_output, table_output]
|
90 |
)
|
91 |
|
92 |
# Launch the app
|
|
|
4 |
import pandas as pd
|
5 |
import io
|
6 |
import base64
|
7 |
+
import ast
|
8 |
|
9 |
# Function to process and visualize log probs
|
10 |
def visualize_logprobs(json_input):
|
|
|
64 |
columns=["Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative"]
|
65 |
)
|
66 |
|
67 |
+
# Generate colored text based on log probabilities
|
68 |
+
# Normalize log probs to [0, 1] for color scaling (0 = most uncertain, 1 = most confident)
|
69 |
+
min_logprob = min(logprobs)
|
70 |
+
max_logprob = max(logprobs)
|
71 |
+
if max_logprob == min_logprob:
|
72 |
+
normalized_probs = [0.5] * len(logprobs) # Avoid division by zero
|
73 |
+
else:
|
74 |
+
normalized_probs = [(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs]
|
75 |
+
|
76 |
+
# Create HTML for colored text
|
77 |
+
colored_text = ""
|
78 |
+
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
|
79 |
+
# Map normalized probability to RGB color (green for high confidence, red for low)
|
80 |
+
# Use a simple linear interpolation: green (0, 255, 0) to red (255, 0, 0)
|
81 |
+
r = int(255 * (1 - norm_prob)) # Red increases as uncertainty increases
|
82 |
+
g = int(255 * norm_prob) # Green decreases as uncertainty increases
|
83 |
+
b = 0 # Blue stays 0 for simplicity
|
84 |
+
color = f'rgb({r}, {g}, {b})'
|
85 |
+
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
|
86 |
+
if i < len(tokens) - 1:
|
87 |
+
colored_text += " " # Add space between tokens
|
88 |
+
|
89 |
+
colored_text_html = f'<p>{colored_text}</p>'
|
90 |
+
|
91 |
+
return img_html, df, colored_text_html
|
92 |
|
93 |
except Exception as e:
|
94 |
+
return f"Error: {str(e)}", None, None
|
95 |
|
96 |
# Gradio interface
|
97 |
with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
|
104 |
# Outputs
|
105 |
plot_output = gr.HTML(label="Log Probability Plot")
|
106 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
107 |
+
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
|
108 |
|
109 |
# Button to trigger visualization
|
110 |
btn = gr.Button("Visualize")
|
111 |
btn.click(
|
112 |
fn=visualize_logprobs,
|
113 |
inputs=json_input,
|
114 |
+
outputs=[plot_output, table_output, text_output]
|
115 |
)
|
116 |
|
117 |
# Launch the app
|