codelion commited on
Commit
8cb94f0
·
verified ·
1 Parent(s): 6b2ca38

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -39
app.py CHANGED
@@ -61,8 +61,8 @@ def ensure_float(value):
61
  def create_empty_figure(title):
62
  return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
63
 
64
- # Function to process and visualize log probs with interactive Plotly plots
65
- def visualize_logprobs(json_input):
66
  try:
67
  # Parse the input (handles both JSON and Python dictionaries)
68
  data = parse_input(json_input)
@@ -75,13 +75,13 @@ def visualize_logprobs(json_input):
75
  else:
76
  raise ValueError("Input must be a list or dictionary with 'content' key")
77
 
78
- # Extract tokens and log probs, skipping None or non-finite values with fixed filter of -100000
79
  tokens = []
80
  logprobs = []
81
  top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives)
82
  for entry in content:
83
  logprob = ensure_float(entry.get("logprob", None))
84
- if logprob is not None and math.isfinite(logprob) and logprob >= -100000:
85
  tokens.append(entry["token"])
86
  logprobs.append(logprob)
87
  # Get top_logprobs, default to empty dict if None
@@ -103,11 +103,19 @@ def visualize_logprobs(json_input):
103
 
104
  # Check if there's valid data after filtering
105
  if not logprobs or not tokens:
106
- return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top 3 Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
 
 
 
 
 
 
 
 
107
 
108
  # 1. Main Log Probability Plot (Interactive Plotly)
109
  main_fig = go.Figure()
110
- main_fig.add_trace(go.Scatter(x=list(range(len(logprobs))), y=logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
111
  main_fig.update_layout(
112
  title="Log Probabilities of Generated Tokens",
113
  xaxis_title="Token Position",
@@ -116,15 +124,15 @@ def visualize_logprobs(json_input):
116
  clickmode='event+select'
117
  )
118
  main_fig.update_traces(
119
- customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, prob) in enumerate(zip(tokens, logprobs))],
120
  hovertemplate='<b>%{customdata}</b><extra></extra>'
121
  )
122
 
123
  # 2. Probability Drop Analysis (Interactive Plotly)
124
- if len(logprobs) < 2:
125
  drops_fig = create_empty_figure("Significant Probability Drops")
126
  else:
127
- drops = [logprobs[i+1] - logprobs[i] for i in range(len(logprobs)-1)]
128
  drops_fig = go.Figure()
129
  drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
130
  drops_fig.update_layout(
@@ -135,15 +143,15 @@ def visualize_logprobs(json_input):
135
  clickmode='event+select'
136
  )
137
  drops_fig.update_traces(
138
- customdata=[f"Drop: {drop:.4f}, From: {tokens[i]} to {tokens[i+1]}, Position: {i}" for i, drop in enumerate(drops)],
139
  hovertemplate='<b>%{customdata}</b><extra></extra>'
140
  )
141
 
142
- # Create DataFrame for the table
143
  table_data = []
144
- for i, entry in enumerate(content):
145
  logprob = ensure_float(entry.get("logprob", None))
146
- if logprob is not None and math.isfinite(logprob) and logprob >= -100000 and "top_logprobs" in entry and entry["top_logprobs"] is not None:
147
  token = entry["token"]
148
  top_logprobs = entry["top_logprobs"]
149
  # Ensure all values in top_logprobs are floats
@@ -176,38 +184,38 @@ def visualize_logprobs(json_input):
176
  else None
177
  )
178
 
179
- # Generate colored text
180
- if logprobs:
181
- min_logprob = min(logprobs)
182
- max_logprob = max(logprobs)
183
  if max_logprob == min_logprob:
184
- normalized_probs = [0.5] * len(logprobs)
185
  else:
186
  normalized_probs = [
187
- (lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
188
  ]
189
 
190
  colored_text = ""
191
- for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
192
  r = int(255 * (1 - norm_prob)) # Red for low confidence
193
  g = int(255 * norm_prob) # Green for high confidence
194
  b = 0
195
  color = f"rgb({r}, {g}, {b})"
196
  colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
197
- if i < len(tokens) - 1:
198
  colored_text += " "
199
  colored_text_html = f"<p>{colored_text}</p>"
200
  else:
201
  colored_text_html = "No finite log probabilities to display."
202
 
203
- # Top 3 Token Log Probabilities (Interactive Plotly)
204
- alt_viz_fig = create_empty_figure("Top 3 Token Log Probabilities") if not logprobs or not top_alternatives else go.Figure()
205
- if logprobs and top_alternatives:
206
- for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
207
  for j, (alt_tok, prob) in enumerate(probs):
208
- alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red'][j]))
209
  alt_viz_fig.update_layout(
210
- title="Top 3 Token Log Probabilities",
211
  xaxis_title="Token (Position)",
212
  yaxis_title="Log Probability",
213
  barmode='stack',
@@ -215,29 +223,33 @@ def visualize_logprobs(json_input):
215
  clickmode='event+select'
216
  )
217
  alt_viz_fig.update_traces(
218
- customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, alts) in enumerate(zip(tokens, top_alternatives)) for alt, prob in alts],
219
  hovertemplate='<b>%{customdata}</b><extra></extra>'
220
  )
221
 
222
- return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig)
223
 
224
  except Exception as e:
225
  logger.error("Visualization failed: %s", str(e))
226
- return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top 3 Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
227
 
228
- # Gradio interface with improved layout
229
  with gr.Blocks(title="Log Probability Visualizer") as app:
230
  gr.Markdown("# Log Probability Visualizer")
231
  gr.Markdown(
232
- "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Fixed filter ≥ -100000, 1000 tokens per page."
233
  )
234
 
235
  with gr.Row():
236
- json_input = gr.Textbox(
237
- label="JSON Input",
238
- lines=10,
239
- placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
240
- )
 
 
 
 
241
 
242
  with gr.Row():
243
  plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
@@ -253,8 +265,36 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
253
  btn = gr.Button("Visualize")
254
  btn.click(
255
  fn=visualize_logprobs,
256
- inputs=[json_input],
257
- outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  )
259
 
260
  app.launch()
 
61
  def create_empty_figure(title):
62
  return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
63
 
64
+ # Function to process and visualize log probs with interactive Plotly plots and pagination
65
+ def visualize_logprobs(json_input, prob_filter=-100000, page_size=100, page=0):
66
  try:
67
  # Parse the input (handles both JSON and Python dictionaries)
68
  data = parse_input(json_input)
 
75
  else:
76
  raise ValueError("Input must be a list or dictionary with 'content' key")
77
 
78
+ # Extract tokens, log probs, and top alternatives, skipping None or non-finite values with fixed filter
79
  tokens = []
80
  logprobs = []
81
  top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives)
82
  for entry in content:
83
  logprob = ensure_float(entry.get("logprob", None))
84
+ if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter:
85
  tokens.append(entry["token"])
86
  logprobs.append(logprob)
87
  # Get top_logprobs, default to empty dict if None
 
103
 
104
  # Check if there's valid data after filtering
105
  if not logprobs or not tokens:
106
+ return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top 3 Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
107
+
108
+ # Paginate data for large inputs (fixed page size of 100)
109
+ total_pages = max(1, (len(logprobs) + page_size - 1) // page_size)
110
+ start_idx = page * page_size
111
+ end_idx = min((page + 1) * page_size, len(logprobs))
112
+ paginated_tokens = tokens[start_idx:end_idx]
113
+ paginated_logprobs = logprobs[start_idx:end_idx]
114
+ paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else []
115
 
116
  # 1. Main Log Probability Plot (Interactive Plotly)
117
  main_fig = go.Figure()
118
+ main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
119
  main_fig.update_layout(
120
  title="Log Probabilities of Generated Tokens",
121
  xaxis_title="Token Position",
 
124
  clickmode='event+select'
125
  )
126
  main_fig.update_traces(
127
+ customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))],
128
  hovertemplate='<b>%{customdata}</b><extra></extra>'
129
  )
130
 
131
  # 2. Probability Drop Analysis (Interactive Plotly)
132
+ if len(paginated_logprobs) < 2:
133
  drops_fig = create_empty_figure("Significant Probability Drops")
134
  else:
135
+ drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)]
136
  drops_fig = go.Figure()
137
  drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
138
  drops_fig.update_layout(
 
143
  clickmode='event+select'
144
  )
145
  drops_fig.update_traces(
146
+ customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)],
147
  hovertemplate='<b>%{customdata}</b><extra></extra>'
148
  )
149
 
150
+ # Create DataFrame for the table (paginated)
151
  table_data = []
152
+ for i, entry in enumerate(content[start_idx:end_idx]):
153
  logprob = ensure_float(entry.get("logprob", None))
154
+ if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter and "top_logprobs" in entry and entry["top_logprobs"] is not None:
155
  token = entry["token"]
156
  top_logprobs = entry["top_logprobs"]
157
  # Ensure all values in top_logprobs are floats
 
184
  else None
185
  )
186
 
187
+ # Generate colored text (paginated)
188
+ if paginated_logprobs:
189
+ min_logprob = min(paginated_logprobs)
190
+ max_logprob = max(paginated_logprobs)
191
  if max_logprob == min_logprob:
192
+ normalized_probs = [0.5] * len(paginated_logprobs)
193
  else:
194
  normalized_probs = [
195
+ (lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs
196
  ]
197
 
198
  colored_text = ""
199
+ for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)):
200
  r = int(255 * (1 - norm_prob)) # Red for low confidence
201
  g = int(255 * norm_prob) # Green for high confidence
202
  b = 0
203
  color = f"rgb({r}, {g}, {b})"
204
  colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
205
+ if i < len(paginated_tokens) - 1:
206
  colored_text += " "
207
  colored_text_html = f"<p>{colored_text}</p>"
208
  else:
209
  colored_text_html = "No finite log probabilities to display."
210
 
211
+ # Top 3 Token Log Probabilities (Interactive Plotly, paginated)
212
+ alt_viz_fig = create_empty_figure("Top 3 Token Log Probabilities") if not paginated_logprobs or not paginated_alternatives else go.Figure()
213
+ if paginated_logprobs and paginated_alternatives:
214
+ for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)):
215
  for j, (alt_tok, prob) in enumerate(probs):
216
+ alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red'][j]))
217
  alt_viz_fig.update_layout(
218
+ title="Top 3 Token Log Probabilities (Paginated)",
219
  xaxis_title="Token (Position)",
220
  yaxis_title="Log Probability",
221
  barmode='stack',
 
223
  clickmode='event+select'
224
  )
225
  alt_viz_fig.update_traces(
226
+ customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts],
227
  hovertemplate='<b>%{customdata}</b><extra></extra>'
228
  )
229
 
230
+ return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig, total_pages, page)
231
 
232
  except Exception as e:
233
  logger.error("Visualization failed: %s", str(e))
234
+ return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top 3 Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0)
235
 
236
+ # Gradio interface with interactive layout and pagination
237
  with gr.Blocks(title="Log Probability Visualizer") as app:
238
  gr.Markdown("# Log Probability Visualizer")
239
  gr.Markdown(
240
+ "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Fixed filter ≥ -100000, 100 tokens per page."
241
  )
242
 
243
  with gr.Row():
244
+ with gr.Column(scale=1):
245
+ json_input = gr.Textbox(
246
+ label="JSON Input",
247
+ lines=10,
248
+ placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
249
+ )
250
+ with gr.Column(scale=1):
251
+ page = gr.Number(value=0, label="Page Number", precision=0, minimum=0)
252
+ page_size = gr.Number(value=100, label="Page Size", precision=0, minimum=10, maximum=1000, interactive=False) # Fixed at 100, non-interactive
253
 
254
  with gr.Row():
255
  plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
 
265
  btn = gr.Button("Visualize")
266
  btn.click(
267
  fn=visualize_logprobs,
268
+ inputs=[json_input, page_size, page],
269
+ outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, gr.State(), gr.State()],
270
+ )
271
+
272
+ # Pagination controls
273
+ with gr.Row():
274
+ prev_btn = gr.Button("Previous Page")
275
+ next_btn = gr.Button("Next Page")
276
+ total_pages_output = gr.Number(label="Total Pages", interactive=False)
277
+ current_page_output = gr.Number(label="Current Page", interactive=False)
278
+
279
+ def update_page(json_input, current_page, action):
280
+ if action == "prev" and current_page > 0:
281
+ current_page -= 1
282
+ elif action == "next":
283
+ total_pages = visualize_logprobs(json_input, -100000, 100, 0)[5] # Get total pages with fixed filter and page size
284
+ if current_page < total_pages - 1:
285
+ current_page += 1
286
+ return gr.update(value=current_page), gr.update(value=total_pages)
287
+
288
+ prev_btn.click(
289
+ fn=update_page,
290
+ inputs=[json_input, page, gr.State()],
291
+ outputs=[page, total_pages_output]
292
+ )
293
+
294
+ next_btn.click(
295
+ fn=update_page,
296
+ inputs=[json_input, page, gr.State()],
297
+ outputs=[page, total_pages_output]
298
  )
299
 
300
  app.launch()