Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -46,23 +46,24 @@ def parse_input(json_input):
|
|
46 |
# Function to ensure a value is a float, converting from string if necessary
|
47 |
def ensure_float(value):
|
48 |
if value is None:
|
49 |
-
|
|
|
50 |
if isinstance(value, str):
|
51 |
try:
|
52 |
return float(value)
|
53 |
except ValueError:
|
54 |
logger.error("Failed to convert string '%s' to float", value)
|
55 |
-
return
|
56 |
if isinstance(value, (int, float)):
|
57 |
return float(value)
|
58 |
-
return
|
59 |
|
60 |
# Function to create an empty Plotly figure
|
61 |
def create_empty_figure(title):
|
62 |
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
|
63 |
|
64 |
-
# Function to process and visualize log probs with
|
65 |
-
def visualize_logprobs(json_input
|
66 |
try:
|
67 |
# Parse the input (handles both JSON and Python dictionaries)
|
68 |
data = parse_input(json_input)
|
@@ -75,47 +76,36 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
75 |
else:
|
76 |
raise ValueError("Input must be a list or dictionary with 'content' key")
|
77 |
|
78 |
-
# Extract tokens, log probs, and top alternatives, skipping
|
79 |
tokens = []
|
80 |
logprobs = []
|
81 |
-
top_alternatives = [] # List to store
|
82 |
for entry in content:
|
83 |
logprob = ensure_float(entry.get("logprob", None))
|
84 |
-
if
|
85 |
tokens.append(entry["token"])
|
86 |
logprobs.append(logprob)
|
87 |
# Get top_logprobs, default to empty dict if None
|
88 |
top_probs = entry.get("top_logprobs", {})
|
89 |
-
# Ensure all values in top_logprobs are floats
|
90 |
-
finite_top_probs =
|
91 |
for key, value in top_probs.items():
|
92 |
float_value = ensure_float(value)
|
93 |
if float_value is not None and math.isfinite(float_value):
|
94 |
-
finite_top_probs
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True)
|
99 |
-
top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest)
|
100 |
-
top_alternatives.append(top_3)
|
101 |
else:
|
102 |
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
|
103 |
|
104 |
# Check if there's valid data after filtering
|
105 |
if not logprobs or not tokens:
|
106 |
-
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top
|
107 |
-
|
108 |
-
# Paginate data for large inputs
|
109 |
-
total_pages = max(1, (len(logprobs) + page_size - 1) // page_size)
|
110 |
-
start_idx = page * page_size
|
111 |
-
end_idx = min((page + 1) * page_size, len(logprobs))
|
112 |
-
paginated_tokens = tokens[start_idx:end_idx]
|
113 |
-
paginated_logprobs = logprobs[start_idx:end_idx]
|
114 |
-
paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else []
|
115 |
|
116 |
# 1. Main Log Probability Plot (Interactive Plotly)
|
117 |
main_fig = go.Figure()
|
118 |
-
main_fig.add_trace(go.Scatter(x=list(range(len(
|
119 |
main_fig.update_layout(
|
120 |
title="Log Probabilities of Generated Tokens",
|
121 |
xaxis_title="Token Position",
|
@@ -124,15 +114,15 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
124 |
clickmode='event+select'
|
125 |
)
|
126 |
main_fig.update_traces(
|
127 |
-
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i
|
128 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
129 |
)
|
130 |
|
131 |
# 2. Probability Drop Analysis (Interactive Plotly)
|
132 |
-
if len(
|
133 |
drops_fig = create_empty_figure("Significant Probability Drops")
|
134 |
else:
|
135 |
-
drops = [
|
136 |
drops_fig = go.Figure()
|
137 |
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
|
138 |
drops_fig.update_layout(
|
@@ -143,79 +133,75 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
143 |
clickmode='event+select'
|
144 |
)
|
145 |
drops_fig.update_traces(
|
146 |
-
customdata=[f"Drop: {drop:.4f}, From: {
|
147 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
148 |
)
|
149 |
|
150 |
-
# Create DataFrame for the table
|
151 |
table_data = []
|
152 |
-
for
|
|
|
153 |
logprob = ensure_float(entry.get("logprob", None))
|
154 |
-
if
|
155 |
token = entry["token"]
|
156 |
top_logprobs = entry["top_logprobs"]
|
157 |
# Ensure all values in top_logprobs are floats
|
158 |
-
finite_top_logprobs =
|
159 |
for key, value in top_logprobs.items():
|
160 |
float_value = ensure_float(value)
|
161 |
if float_value is not None and math.isfinite(float_value):
|
162 |
-
finite_top_logprobs
|
163 |
-
#
|
164 |
-
|
165 |
row = [token, f"{logprob:.4f}"]
|
166 |
-
for alt_token, alt_logprob in
|
167 |
row.append(f"{alt_token}: {alt_logprob:.4f}")
|
168 |
-
|
|
|
169 |
row.append("")
|
170 |
table_data.append(row)
|
171 |
|
172 |
df = (
|
173 |
pd.DataFrame(
|
174 |
table_data,
|
175 |
-
columns=[
|
176 |
-
"Token",
|
177 |
-
"Log Prob",
|
178 |
-
"Top 1 Alternative",
|
179 |
-
"Top 2 Alternative",
|
180 |
-
"Top 3 Alternative",
|
181 |
-
],
|
182 |
)
|
183 |
if table_data
|
184 |
else None
|
185 |
)
|
186 |
|
187 |
-
# Generate colored text
|
188 |
-
if
|
189 |
-
min_logprob = min(
|
190 |
-
max_logprob = max(
|
191 |
if max_logprob == min_logprob:
|
192 |
-
normalized_probs = [0.5] * len(
|
193 |
else:
|
194 |
normalized_probs = [
|
195 |
-
(lp - min_logprob) / (max_logprob - min_logprob) for lp in
|
196 |
]
|
197 |
|
198 |
colored_text = ""
|
199 |
-
for i, (token, norm_prob) in enumerate(zip(
|
200 |
r = int(255 * (1 - norm_prob)) # Red for low confidence
|
201 |
g = int(255 * norm_prob) # Green for high confidence
|
202 |
b = 0
|
203 |
color = f"rgb({r}, {g}, {b})"
|
204 |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
|
205 |
-
if i < len(
|
206 |
colored_text += " "
|
207 |
colored_text_html = f"<p>{colored_text}</p>"
|
208 |
else:
|
209 |
colored_text_html = "No finite log probabilities to display."
|
210 |
|
211 |
-
# Top
|
212 |
-
alt_viz_fig = create_empty_figure("Top
|
213 |
-
if
|
214 |
-
for i, (token, probs) in enumerate(zip(
|
215 |
for j, (alt_tok, prob) in enumerate(probs):
|
216 |
-
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i
|
217 |
alt_viz_fig.update_layout(
|
218 |
-
title="Top
|
219 |
xaxis_title="Token (Position)",
|
220 |
yaxis_title="Log Probability",
|
221 |
barmode='stack',
|
@@ -223,33 +209,29 @@ def visualize_logprobs(json_input, page_size=100, page=0):
|
|
223 |
clickmode='event+select'
|
224 |
)
|
225 |
alt_viz_fig.update_traces(
|
226 |
-
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i
|
227 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
228 |
)
|
229 |
|
230 |
-
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig
|
231 |
|
232 |
except Exception as e:
|
233 |
logger.error("Visualization failed: %s", str(e))
|
234 |
-
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top
|
235 |
|
236 |
-
# Gradio interface with
|
237 |
with gr.Blocks(title="Log Probability Visualizer") as app:
|
238 |
gr.Markdown("# Log Probability Visualizer")
|
239 |
gr.Markdown(
|
240 |
-
"Paste your JSON or Python dictionary log prob data below to visualize
|
241 |
)
|
242 |
|
243 |
with gr.Row():
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
)
|
250 |
-
with gr.Column(scale=1):
|
251 |
-
page = gr.Number(value=0, label="Page Number", precision=0, minimum=0)
|
252 |
-
page_size = gr.Number(value=100, label="Page Size", precision=0, minimum=10, maximum=1000, interactive=False) # Fixed at 100, non-interactive
|
253 |
|
254 |
with gr.Row():
|
255 |
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
|
@@ -257,7 +239,7 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
257 |
|
258 |
with gr.Row():
|
259 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
260 |
-
alt_viz_output = gr.Plot(label="Top
|
261 |
|
262 |
with gr.Row():
|
263 |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
|
@@ -265,46 +247,8 @@ with gr.Blocks(title="Log Probability Visualizer") as app:
|
|
265 |
btn = gr.Button("Visualize")
|
266 |
btn.click(
|
267 |
fn=visualize_logprobs,
|
268 |
-
inputs=[json_input
|
269 |
-
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output
|
270 |
-
)
|
271 |
-
|
272 |
-
# Pagination controls
|
273 |
-
with gr.Row():
|
274 |
-
prev_btn = gr.Button("Previous Page")
|
275 |
-
next_btn = gr.Button("Next Page")
|
276 |
-
total_pages_output = gr.Number(label="Total Pages", interactive=False)
|
277 |
-
current_page_output = gr.Number(label="Current Page", interactive=False)
|
278 |
-
|
279 |
-
def update_page(json_input, current_page, action):
|
280 |
-
try:
|
281 |
-
# Safely get total_pages by trying to process the data
|
282 |
-
result = visualize_logprobs(json_input, 100, 0) # Use fixed page size and page 0
|
283 |
-
if isinstance(result[0], str) or result[0] is None: # Check if it's an error message or empty figure
|
284 |
-
total_pages = 1 # Default to 1 page if no data
|
285 |
-
else:
|
286 |
-
total_pages = result[5] # Extract total_pages from the result (index 5)
|
287 |
-
except Exception as e:
|
288 |
-
logger.error("Failed to calculate total pages: %s", str(e))
|
289 |
-
total_pages = 1 # Default to 1 page on error
|
290 |
-
|
291 |
-
if action == "prev" and current_page > 0:
|
292 |
-
current_page -= 1
|
293 |
-
elif action == "next":
|
294 |
-
if current_page < total_pages - 1:
|
295 |
-
current_page += 1
|
296 |
-
return gr.update(value=current_page), gr.update(value=total_pages)
|
297 |
-
|
298 |
-
prev_btn.click(
|
299 |
-
fn=update_page,
|
300 |
-
inputs=[json_input, page, gr.State()],
|
301 |
-
outputs=[page, total_pages_output]
|
302 |
-
)
|
303 |
-
|
304 |
-
next_btn.click(
|
305 |
-
fn=update_page,
|
306 |
-
inputs=[json_input, page, gr.State()],
|
307 |
-
outputs=[page, total_pages_output]
|
308 |
)
|
309 |
|
310 |
app.launch()
|
|
|
46 |
# Function to ensure a value is a float, converting from string if necessary
|
47 |
def ensure_float(value):
|
48 |
if value is None:
|
49 |
+
logger.debug("Replacing None logprob with 0.0")
|
50 |
+
return 0.0 # Default to 0.0 for None to ensure visualization
|
51 |
if isinstance(value, str):
|
52 |
try:
|
53 |
return float(value)
|
54 |
except ValueError:
|
55 |
logger.error("Failed to convert string '%s' to float", value)
|
56 |
+
return 0.0 # Default to 0.0 for invalid strings
|
57 |
if isinstance(value, (int, float)):
|
58 |
return float(value)
|
59 |
+
return 0.0 # Default for any other type
|
60 |
|
61 |
# Function to create an empty Plotly figure
|
62 |
def create_empty_figure(title):
|
63 |
return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False)
|
64 |
|
65 |
+
# Function to process and visualize the full log probs with dynamic top_logprobs
|
66 |
+
def visualize_logprobs(json_input):
|
67 |
try:
|
68 |
# Parse the input (handles both JSON and Python dictionaries)
|
69 |
data = parse_input(json_input)
|
|
|
76 |
else:
|
77 |
raise ValueError("Input must be a list or dictionary with 'content' key")
|
78 |
|
79 |
+
# Extract tokens, log probs, and top alternatives, skipping non-finite values with fixed filter of -100000
|
80 |
tokens = []
|
81 |
logprobs = []
|
82 |
+
top_alternatives = [] # List to store all top_logprobs (dynamic length)
|
83 |
for entry in content:
|
84 |
logprob = ensure_float(entry.get("logprob", None))
|
85 |
+
if math.isfinite(logprob) and logprob >= -100000:
|
86 |
tokens.append(entry["token"])
|
87 |
logprobs.append(logprob)
|
88 |
# Get top_logprobs, default to empty dict if None
|
89 |
top_probs = entry.get("top_logprobs", {})
|
90 |
+
# Ensure all values in top_logprobs are floats and create a list of tuples
|
91 |
+
finite_top_probs = []
|
92 |
for key, value in top_probs.items():
|
93 |
float_value = ensure_float(value)
|
94 |
if float_value is not None and math.isfinite(float_value):
|
95 |
+
finite_top_probs.append((key, float_value))
|
96 |
+
# Sort by log probability (descending) to get all alternatives
|
97 |
+
sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True)
|
98 |
+
top_alternatives.append(sorted_probs) # Store all alternatives, dynamic length
|
|
|
|
|
|
|
99 |
else:
|
100 |
logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None)))
|
101 |
|
102 |
# Check if there's valid data after filtering
|
103 |
if not logprobs or not tokens:
|
104 |
+
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# 1. Main Log Probability Plot (Interactive Plotly)
|
107 |
main_fig = go.Figure()
|
108 |
+
main_fig.add_trace(go.Scatter(x=list(range(len(logprobs))), y=logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue')))
|
109 |
main_fig.update_layout(
|
110 |
title="Log Probabilities of Generated Tokens",
|
111 |
xaxis_title="Token Position",
|
|
|
114 |
clickmode='event+select'
|
115 |
)
|
116 |
main_fig.update_traces(
|
117 |
+
customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, prob) in enumerate(zip(tokens, logprobs))],
|
118 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
119 |
)
|
120 |
|
121 |
# 2. Probability Drop Analysis (Interactive Plotly)
|
122 |
+
if len(logprobs) < 2:
|
123 |
drops_fig = create_empty_figure("Significant Probability Drops")
|
124 |
else:
|
125 |
+
drops = [logprobs[i+1] - logprobs[i] for i in range(len(logprobs)-1)]
|
126 |
drops_fig = go.Figure()
|
127 |
drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red'))
|
128 |
drops_fig.update_layout(
|
|
|
133 |
clickmode='event+select'
|
134 |
)
|
135 |
drops_fig.update_traces(
|
136 |
+
customdata=[f"Drop: {drop:.4f}, From: {tokens[i]} to {tokens[i+1]}, Position: {i}" for i, drop in enumerate(drops)],
|
137 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
138 |
)
|
139 |
|
140 |
+
# Create DataFrame for the table with dynamic top_logprobs
|
141 |
table_data = []
|
142 |
+
max_alternatives = max(len(alts) for alts in top_alternatives) if top_alternatives else 0
|
143 |
+
for i, entry in enumerate(content):
|
144 |
logprob = ensure_float(entry.get("logprob", None))
|
145 |
+
if math.isfinite(logprob) and logprob >= -100000 and "top_logprobs" in entry and entry["top_logprobs"] is not None:
|
146 |
token = entry["token"]
|
147 |
top_logprobs = entry["top_logprobs"]
|
148 |
# Ensure all values in top_logprobs are floats
|
149 |
+
finite_top_logprobs = []
|
150 |
for key, value in top_logprobs.items():
|
151 |
float_value = ensure_float(value)
|
152 |
if float_value is not None and math.isfinite(float_value):
|
153 |
+
finite_top_logprobs.append((key, float_value))
|
154 |
+
# Sort by log probability (descending)
|
155 |
+
sorted_probs = sorted(finite_top_logprobs, key=lambda x: x[1], reverse=True)
|
156 |
row = [token, f"{logprob:.4f}"]
|
157 |
+
for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives
|
158 |
row.append(f"{alt_token}: {alt_logprob:.4f}")
|
159 |
+
# Pad with empty strings if fewer alternatives than max
|
160 |
+
while len(row) < 2 + max_alternatives:
|
161 |
row.append("")
|
162 |
table_data.append(row)
|
163 |
|
164 |
df = (
|
165 |
pd.DataFrame(
|
166 |
table_data,
|
167 |
+
columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)],
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
)
|
169 |
if table_data
|
170 |
else None
|
171 |
)
|
172 |
|
173 |
+
# Generate colored text
|
174 |
+
if logprobs:
|
175 |
+
min_logprob = min(logprobs)
|
176 |
+
max_logprob = max(logprobs)
|
177 |
if max_logprob == min_logprob:
|
178 |
+
normalized_probs = [0.5] * len(logprobs)
|
179 |
else:
|
180 |
normalized_probs = [
|
181 |
+
(lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs
|
182 |
]
|
183 |
|
184 |
colored_text = ""
|
185 |
+
for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)):
|
186 |
r = int(255 * (1 - norm_prob)) # Red for low confidence
|
187 |
g = int(255 * norm_prob) # Green for high confidence
|
188 |
b = 0
|
189 |
color = f"rgb({r}, {g}, {b})"
|
190 |
colored_text += f'<span style="color: {color}; font-weight: bold;">{token}</span>'
|
191 |
+
if i < len(tokens) - 1:
|
192 |
colored_text += " "
|
193 |
colored_text_html = f"<p>{colored_text}</p>"
|
194 |
else:
|
195 |
colored_text_html = "No finite log probabilities to display."
|
196 |
|
197 |
+
# Top Token Log Probabilities (Interactive Plotly, dynamic length)
|
198 |
+
alt_viz_fig = create_empty_figure("Top Token Log Probabilities") if not logprobs or not top_alternatives else go.Figure()
|
199 |
+
if logprobs and top_alternatives:
|
200 |
+
for i, (token, probs) in enumerate(zip(tokens, top_alternatives)):
|
201 |
for j, (alt_tok, prob) in enumerate(probs):
|
202 |
+
alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)]))
|
203 |
alt_viz_fig.update_layout(
|
204 |
+
title="Top Token Log Probabilities",
|
205 |
xaxis_title="Token (Position)",
|
206 |
yaxis_title="Log Probability",
|
207 |
barmode='stack',
|
|
|
209 |
clickmode='event+select'
|
210 |
)
|
211 |
alt_viz_fig.update_traces(
|
212 |
+
customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i}" for i, (tok, alts) in enumerate(zip(tokens, top_alternatives)) for alt, prob in alts],
|
213 |
hovertemplate='<b>%{customdata}</b><extra></extra>'
|
214 |
)
|
215 |
|
216 |
+
return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig)
|
217 |
|
218 |
except Exception as e:
|
219 |
logger.error("Visualization failed: %s", str(e))
|
220 |
+
return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"))
|
221 |
|
222 |
+
# Gradio interface with full dataset visualization and dynamic top_logprobs
|
223 |
with gr.Blocks(title="Log Probability Visualizer") as app:
|
224 |
gr.Markdown("# Log Probability Visualizer")
|
225 |
gr.Markdown(
|
226 |
+
"Paste your JSON or Python dictionary log prob data below to visualize all tokens at once. Fixed filter ≥ -100000, dynamic number of top_logprobs."
|
227 |
)
|
228 |
|
229 |
with gr.Row():
|
230 |
+
json_input = gr.Textbox(
|
231 |
+
label="JSON Input",
|
232 |
+
lines=10,
|
233 |
+
placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...",
|
234 |
+
)
|
|
|
|
|
|
|
|
|
235 |
|
236 |
with gr.Row():
|
237 |
plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)")
|
|
|
239 |
|
240 |
with gr.Row():
|
241 |
table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives")
|
242 |
+
alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)")
|
243 |
|
244 |
with gr.Row():
|
245 |
text_output = gr.HTML(label="Colored Text (Confidence Visualization)")
|
|
|
247 |
btn = gr.Button("Visualize")
|
248 |
btn.click(
|
249 |
fn=visualize_logprobs,
|
250 |
+
inputs=[json_input],
|
251 |
+
outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
)
|
253 |
|
254 |
app.launch()
|