import gradio as gr import json import matplotlib.pyplot as plt import pandas as pd import io import base64 import math import ast import logging from matplotlib.widgets import Cursor # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Function to safely parse JSON or Python dictionary input def parse_input(json_input): logger.debug("Attempting to parse input: %s", json_input) try: # Try to parse as JSON first data = json.loads(json_input) logger.debug("Successfully parsed as JSON") return data except json.JSONDecodeError as e: logger.error("JSON parsing failed: %s", str(e)) try: # If JSON fails, try to parse as Python literal (e.g., with single quotes) data = ast.literal_eval(json_input) logger.debug("Successfully parsed as Python literal") # Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes) def dict_to_json(obj): if isinstance(obj, dict): return {str(k): dict_to_json(v) for k, v in obj.items()} elif isinstance(obj, list): return [dict_to_json(item) for item in obj] else: return obj converted_data = dict_to_json(data) logger.debug("Converted to JSON-compatible format") return converted_data except (SyntaxError, ValueError) as e: logger.error("Python literal parsing failed: %s", str(e)) raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.") # Function to ensure a value is a float, converting from string if necessary def ensure_float(value): if value is None: return None if isinstance(value, str): try: return float(value) except ValueError: logger.error("Failed to convert string '%s' to float", value) return None if isinstance(value, (int, float)): return float(value) return None # Function to process and visualize log probs with hover and alternatives def visualize_logprobs(json_input): try: # Parse the input (handles both JSON and Python dictionaries) data = parse_input(json_input) # Ensure data is a list or dictionary with 'content' if isinstance(data, dict) and "content" in data: content = data["content"] elif isinstance(data, list): content = data else: raise ValueError("Input must be a list or dictionary with 'content' key") # Extract tokens, log probs, and top alternatives, skipping None or non-finite values tokens = [] logprobs = [] top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives) for entry in content: logprob = ensure_float(entry.get("logprob", None)) if logprob is not None and math.isfinite(logprob): tokens.append(entry["token"]) logprobs.append(logprob) # Get top_logprobs, default to empty dict if None top_probs = entry.get("top_logprobs", {}) # Ensure all values in top_logprobs are floats finite_top_probs = {} for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs[key] = float_value # Get the top 3 log probs (including the selected token) all_probs = {entry["token"]: logprob} # Add the selected token's logprob all_probs.update(finite_top_probs) # Add alternatives sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True) top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest) top_alternatives.append(top_3) else: logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None))) # Create the plot with hover functionality if logprobs: fig, ax = plt.subplots(figsize=(10, 5)) scatter = ax.plot(range(len(logprobs)), logprobs, marker="o", linestyle="-", color="b", label="Selected Token")[0] ax.set_title("Log Probabilities of Generated Tokens") ax.set_xlabel("Token Position") ax.set_ylabel("Log Probability") ax.grid(True) ax.set_xticks([]) # Hide X-axis labels by default # Add hover functionality using Matplotlib's Cursor for tooltips cursor = Cursor(ax, useblit=True, color='red', linewidth=1) token_annotations = [] for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)): annotation = ax.annotate('', (x, y), xytext=(10, 10), textcoords='offset points', bbox=dict(boxstyle='round', facecolor='white', alpha=0.8), visible=False) token_annotations.append(annotation) def on_hover(event): if event.inaxes == ax: for i, (x, y) in enumerate(zip(range(len(logprobs)), logprobs)): contains, _ = scatter.contains(event) if contains and abs(event.xdata - x) < 0.5 and abs(event.ydata - y) < 0.5: token_annotations[i].set_text(tokens[i]) token_annotations[i].set_visible(True) fig.canvas.draw_idle() else: token_annotations[i].set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect('motion_notify_event', on_hover) # Save plot to a bytes buffer buf = io.BytesIO() plt.savefig(buf, format="png", bbox_inches="tight", dpi=100) buf.seek(0) plt.close() # Convert to base64 for Gradio img_bytes = buf.getvalue() img_base64 = base64.b64encode(img_bytes).decode("utf-8") img_html = f'' else: img_html = "No finite log probabilities to plot." # Create DataFrame for the table table_data = [] for i, entry in enumerate(content): logprob = ensure_float(entry.get("logprob", None)) if logprob is not None and math.isfinite(logprob) and "top_logprobs" in entry and entry["top_logprobs"] is not None: token = entry["token"] top_logprobs = entry["top_logprobs"] # Ensure all values in top_logprobs are floats finite_top_logprobs = {} for key, value in top_logprobs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_logprobs[key] = float_value # Extract top 3 alternatives from top_logprobs top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3] row = [token, f"{logprob:.4f}"] for alt_token, alt_logprob in top_3: row.append(f"{alt_token}: {alt_logprob:.4f}") while len(row) < 5: row.append("") table_data.append(row) df = ( pd.DataFrame( table_data, columns=[ "Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative", ], ) if table_data else None ) # Generate colored text if logprobs: min_logprob = min(logprobs) max_logprob = max(logprobs) if max_logprob == min_logprob: normalized_probs = [0.5] * len(logprobs) else: normalized_probs = [ (lp - min_logprob) / (max_logprob - min_logprob) for lp in logprobs ] colored_text = "" for i, (token, norm_prob) in enumerate(zip(tokens, normalized_probs)): r = int(255 * (1 - norm_prob)) # Red for low confidence g = int(255 * norm_prob) # Green for high confidence b = 0 color = f"rgb({r}, {g}, {b})" colored_text += f'{token}' if i < len(tokens) - 1: colored_text += " " colored_text_html = f"

{colored_text}

" else: colored_text_html = "No finite log probabilities to display." # Create an alternative visualization for top 3 tokens alt_viz_html = "" if logprobs and top_alternatives: alt_viz_html = "

Top 3 Token Log Probabilities

" return img_html, df, colored_text_html, alt_viz_html except Exception as e: logger.error("Visualization failed: %s", str(e)) return f"Error: {str(e)}", None, None, None # Gradio interface with gr.Blocks(title="Log Probability Visualizer") as app: gr.Markdown("# Log Probability Visualizer") gr.Markdown( "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Ensure property names are in double quotes (e.g., \"content\") for JSON, or use correct Python dictionary format." ) json_input = gr.Textbox( label="JSON Input", lines=10, placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...", ) plot_output = gr.HTML(label="Log Probability Plot (Hover for Tokens)") table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") text_output = gr.HTML(label="Colored Text (Confidence Visualization)") alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities") btn = gr.Button("Visualize") btn.click( fn=visualize_logprobs, inputs=json_input, outputs=[plot_output, table_output, text_output, alt_viz_output], ) app.launch()