import gradio as gr import json import matplotlib.pyplot as plt import pandas as pd import io import base64 import math import ast import logging import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots from scipy import stats # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Function to safely parse JSON or Python dictionary input def parse_input(json_input): logger.debug("Attempting to parse input: %s", json_input) try: # Try to parse as JSON first data = json.loads(json_input) logger.debug("Successfully parsed as JSON") return data except json.JSONDecodeError as e: logger.error("JSON parsing failed: %s", str(e)) try: # If JSON fails, try to parse as Python literal (e.g., with single quotes) data = ast.literal_eval(json_input) logger.debug("Successfully parsed as Python literal") # Convert Python dictionary to JSON-compatible format (replace single quotes with double quotes) def dict_to_json(obj): if isinstance(obj, dict): return {str(k): dict_to_json(v) for k, v in obj.items()} elif isinstance(obj, list): return [dict_to_json(item) for item in obj] else: return obj converted_data = dict_to_json(data) logger.debug("Converted to JSON-compatible format") return converted_data except (SyntaxError, ValueError) as e: logger.error("Python literal parsing failed: %s", str(e)) raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") or correct Python dictionary format.") # Function to ensure a value is a float, converting from string if necessary def ensure_float(value): if value is None: return None if isinstance(value, str): try: return float(value) except ValueError: logger.error("Failed to convert string '%s' to float", value) return None if isinstance(value, (int, float)): return float(value) return None # Function to process and visualize log probs with interactive Plotly plots def visualize_logprobs(json_input, prob_filter=-1e9, page_size=50, page=0): try: # Parse the input (handles both JSON and Python dictionaries) data = parse_input(json_input) # Ensure data is a list or dictionary with 'content' if isinstance(data, dict) and "content" in data: content = data["content"] elif isinstance(data, list): content = data else: raise ValueError("Input must be a list or dictionary with 'content' key") # Extract tokens, log probs, and top alternatives, skipping None or non-finite values tokens = [] logprobs = [] top_alternatives = [] # List to store top 3 log probs (selected token + 2 alternatives) for entry in content: logprob = ensure_float(entry.get("logprob", None)) if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter: tokens.append(entry["token"]) logprobs.append(logprob) # Get top_logprobs, default to empty dict if None top_probs = entry.get("top_logprobs", {}) # Ensure all values in top_logprobs are floats finite_top_probs = {} for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs[key] = float_value # Get the top 3 log probs (including the selected token) all_probs = {entry["token"]: logprob} # Add the selected token's logprob all_probs.update(finite_top_probs) # Add alternatives sorted_probs = sorted(all_probs.items(), key=lambda x: x[1], reverse=True) top_3 = sorted_probs[:3] # Top 3 log probs (highest to lowest) top_alternatives.append(top_3) else: logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None))) # Check if there's valid data after filtering if not logprobs or not tokens: return (gr.update(value="No finite log probabilities or tokens to visualize after filtering"), None, None, None, 1, 0) # Paginate data for large inputs total_pages = max(1, (len(logprobs) + page_size - 1) // page_size) start_idx = page * page_size end_idx = min((page + 1) * page_size, len(logprobs)) paginated_tokens = tokens[start_idx:end_idx] paginated_logprobs = logprobs[start_idx:end_idx] paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else [] # 1. Main Log Probability Plot (Interactive Plotly) main_fig = go.Figure() main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue'))) main_fig.update_layout( title="Log Probabilities of Generated Tokens", xaxis_title="Token Position", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select' ) main_fig.update_traces( customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], hovertemplate='%{customdata}' ) # 2. Probability Drop Analysis (Interactive Plotly) if len(paginated_logprobs) < 2: drops_fig = go.Figure() drops_fig.add_trace(go.Bar(x=list(range(len(paginated_logprobs)-1)), y=[0], name='Drop', marker_color='red')) else: drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)] drops_fig = go.Figure() drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red')) drops_fig.update_layout( title="Significant Probability Drops", xaxis_title="Token Position", yaxis_title="Log Probability Drop", hovermode="closest", clickmode='event+select' ) drops_fig.update_traces( customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)], hovertemplate='%{customdata}' ) # 3. Anomaly Detection (Interactive Plotly) if not paginated_logprobs: anomaly_fig = go.Figure() anomaly_fig.add_trace(go.Scatter(x=[], y=[], mode='markers+lines', name='Log Prob', marker_color='blue')) else: z_scores = np.abs(stats.zscore(paginated_logprobs)) outliers = z_scores > 2 # Threshold for outliers anomaly_fig = go.Figure() anomaly_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker_color='blue')) anomaly_fig.add_trace(go.Scatter(x=np.where(outliers)[0], y=[paginated_logprobs[i] for i in np.where(outliers)[0]], mode='markers', name='Outliers', marker_color='red')) anomaly_fig.update_layout( title="Log Probabilities with Outliers", xaxis_title="Token Position", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select' ) anomaly_fig.update_traces( customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}, Outlier: {out}" for i, (tok, prob, out) in enumerate(zip(paginated_tokens, paginated_logprobs, outliers))], hovertemplate='%{customdata}' ) # Create DataFrame for the table (paginated) table_data = [] for i, entry in enumerate(content[start_idx:end_idx]): logprob = ensure_float(entry.get("logprob", None)) if logprob is not None and math.isfinite(logprob) and logprob >= prob_filter and "top_logprobs" in entry and entry["top_logprobs"] is not None: token = entry["token"] top_logprobs = entry["top_logprobs"] # Ensure all values in top_logprobs are floats finite_top_logprobs = {} for key, value in top_logprobs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_logprobs[key] = float_value # Extract top 3 alternatives from top_logprobs top_3 = sorted(finite_top_logprobs.items(), key=lambda x: x[1], reverse=True)[:3] row = [token, f"{logprob:.4f}"] for alt_token, alt_logprob in top_3: row.append(f"{alt_token}: {alt_logprob:.4f}") while len(row) < 5: row.append("") table_data.append(row) df = ( pd.DataFrame( table_data, columns=[ "Token", "Log Prob", "Top 1 Alternative", "Top 2 Alternative", "Top 3 Alternative", ], ) if table_data else None ) # Generate colored text (paginated) if paginated_logprobs: min_logprob = min(paginated_logprobs) max_logprob = max(paginated_logprobs) if max_logprob == min_logprob: normalized_probs = [0.5] * len(paginated_logprobs) else: normalized_probs = [ (lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs ] colored_text = "" for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)): r = int(255 * (1 - norm_prob)) # Red for low confidence g = int(255 * norm_prob) # Green for high confidence b = 0 color = f"rgb({r}, {g}, {b})" colored_text += f'{token}' if i < len(paginated_tokens) - 1: colored_text += " " colored_text_html = f"

{colored_text}

" else: colored_text_html = "No finite log probabilities to display." # Top 3 Token Log Probabilities (paginated) alt_viz_html = "" if paginated_logprobs and paginated_alternatives: alt_viz_fig = go.Figure() for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)): for j, (alt_tok, prob) in enumerate(probs): alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red'][j])) alt_viz_fig.update_layout( title="Top 3 Token Log Probabilities (Paginated)", xaxis_title="Token (Position)", yaxis_title="Log Probability", barmode='stack', hovermode="closest", clickmode='event+select' ) alt_viz_fig.update_traces( customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts], hovertemplate='%{customdata}' ) alt_viz_html = alt_viz_fig.to_html(include_plotlyjs='cdn', full_html=False) else: alt_viz_html = "No finite log probabilities to display." return (main_fig, df, colored_text_html, alt_viz_html, drops_fig, anomaly_fig, total_pages, page) except Exception as e: logger.error("Visualization failed: %s", str(e)) return (gr.update(value=f"Error: {str(e)}"), None, "No finite log probabilities to display.", None, gr.update(value="No data for probability drops."), gr.update(value="No data for anomalies."), 1, 0) # Gradio interface with interactive layout and pagination with gr.Blocks(title="Log Probability Visualizer") as app: gr.Markdown("# Log Probability Visualizer") gr.Markdown( "Paste your JSON or Python dictionary log prob data below to visualize the tokens and their probabilities. Use the filter and pagination to navigate large inputs." ) with gr.Row(): with gr.Column(scale=1): json_input = gr.Textbox( label="JSON Input", lines=10, placeholder="Paste your JSON (e.g., {\"content\": [...]}) or Python dict (e.g., {'content': [...]}) here...", ) with gr.Column(scale=1): prob_filter = gr.Slider(minimum=-1e9, maximum=0, value=-1e9, label="Log Probability Filter (≥)") page_size = gr.Number(value=50, label="Page Size", precision=0, minimum=10, maximum=1000) page = gr.Number(value=0, label="Page Number", precision=0, minimum=0) with gr.Row(): plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)") drops_output = gr.Plot(label="Probability Drops (Click for Details)") with gr.Row(): anomaly_output = gr.Plot(label="Anomaly Detection (Click for Details)") table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") with gr.Row(): text_output = gr.HTML(label="Colored Text (Confidence Visualization)") alt_viz_output = gr.HTML(label="Top 3 Token Log Probabilities") btn = gr.Button("Visualize") btn.click( fn=visualize_logprobs, inputs=[json_input, prob_filter, page_size, page], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, anomaly_output, gr.State(), gr.State()], ) # Pagination controls with gr.Row(): prev_btn = gr.Button("Previous Page") next_btn = gr.Button("Next Page") total_pages_output = gr.Number(label="Total Pages", interactive=False) current_page_output = gr.Number(label="Current Page", interactive=False) def update_page(json_input, prob_filter, page_size, current_page, action): if action == "prev" and current_page > 0: current_page -= 1 elif action == "next": total_pages = visualize_logprobs(json_input, prob_filter, page_size, 0)[6] # Get total pages if current_page < total_pages - 1: current_page += 1 return gr.update(value=current_page), gr.update(value=total_pages) prev_btn.click( fn=update_page, inputs=[json_input, prob_filter, page_size, page, gr.State()], outputs=[page, total_pages_output] ) next_btn.click( fn=update_page, inputs=[json_input, prob_filter, page_size, page, gr.State()], outputs=[page, total_pages_output] ) app.launch()