import gradio as gr import json import matplotlib.pyplot as plt import pandas as pd import io import base64 import math import ast import logging import numpy as np import plotly.graph_objects as go import asyncio import anyio # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Function to safely parse JSON or Python dictionary input def parse_input(json_input): logger.debug("Attempting to parse input: %s", json_input) try: # Try to parse as JSON first data = json.loads(json_input) logger.debug("Successfully parsed as JSON") return data except json.JSONDecodeError as e: logger.error("JSON parsing failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input) raise ValueError(f"Malformed input: {str(e)}. Ensure property names are in double quotes (e.g., \"content\") and the format matches JSON (e.g., {{\"content\": [...]}}).") # Function to ensure a value is a float, converting from string if necessary def ensure_float(value): if value is None: logger.debug("Replacing None logprob with 0.0") return 0.0 # Default to 0.0 for None to ensure visualization if isinstance(value, str): try: return float(value) except ValueError: logger.error("Failed to convert string '%s' to float", value) return 0.0 # Default to 0.0 for invalid strings if isinstance(value, (int, float)): return float(value) return 0.0 # Default for any other type # Function to get or generate a token value (default to "Unknown" if missing) def get_token(entry): token = entry.get("token", "Unknown") if token == "Unknown": logger.warning("Missing 'token' key for entry: %s, using 'Unknown'", entry) return token # Function to create an empty Plotly figure def create_empty_figure(title): return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False) # Precompute the next chunk asynchronously async def precompute_chunk(json_input, chunk_size, current_chunk): try: data = parse_input(json_input) content = data.get("content", []) if isinstance(data, dict) else data if not isinstance(content, list): raise ValueError("Content must be a list of entries") tokens = [] logprobs = [] top_alternatives = [] for entry in content: if not isinstance(entry, dict): logger.warning("Skipping non-dictionary entry: %s", entry) continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000: # Include all entries with default 0.0 tokens.append(get_token(entry)) logprobs.append(logprob) top_probs = entry.get("top_logprobs", {}) if top_probs is None: logger.debug("top_logprobs is None for token: %s, using empty dict", get_token(entry)) top_probs = {} finite_top_probs = [] for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) top_alternatives.append(sorted_probs) if not tokens or not logprobs: return None, None, None next_chunk = current_chunk + 1 start_idx = next_chunk * chunk_size end_idx = min((next_chunk + 1) * chunk_size, len(tokens)) if start_idx >= len(tokens): return None, None, None paginated_tokens = tokens[start_idx:end_idx] paginated_logprobs = logprobs[start_idx:end_idx] paginated_alternatives = top_alternatives[start_idx:end_idx] return paginated_tokens, paginated_logprobs, paginated_alternatives except Exception as e: logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e)) return None, None, None # Function to process and visualize a chunk of log probs with dynamic top_logprobs def visualize_logprobs(json_input, chunk=0, chunk_size=100): try: # Parse the input (handles JSON only) data = parse_input(json_input) # Ensure data is a dictionary with 'content' key containing a list if isinstance(data, dict) and "content" in data: content = data["content"] if not isinstance(content, list): raise ValueError("Content must be a list of entries") elif isinstance(data, list): content = data # Handle direct list input (though only JSON is expected) else: raise ValueError("Input must be a dictionary with 'content' key or a list of entries") # Extract tokens, log probs, and top alternatives, skipping non-finite values with fixed filter of -100000 tokens = [] logprobs = [] top_alternatives = [] # List to store all top_logprobs (dynamic length) for entry in content: if not isinstance(entry, dict): logger.warning("Skipping non-dictionary entry: %s", entry) continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000: # Include all entries with default 0.0 tokens.append(get_token(entry)) logprobs.append(logprob) # Get top_logprobs, default to empty dict if None top_probs = entry.get("top_logprobs", {}) if top_probs is None: logger.debug("top_logprobs is None for token: %s, using empty dict", get_token(entry)) top_probs = {} # Default to empty dict for None # Ensure all values in top_logprobs are floats and create a list of tuples finite_top_probs = [] for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) # Sort by log probability (descending) to get all alternatives sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) top_alternatives.append(sorted_probs) # Store all alternatives, dynamic length else: logger.debug("Skipping entry with logprob: %s (type: %s)", entry.get("logprob"), type(entry.get("logprob", None))) # Check if there's valid data after filtering if not logprobs or not tokens: return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) # Paginate data for chunks of 100 tokens total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size) start_idx = chunk * chunk_size end_idx = min((chunk + 1) * chunk_size, len(logprobs)) paginated_tokens = tokens[start_idx:end_idx] paginated_logprobs = logprobs[start_idx:end_idx] paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else [] # 1. Main Log Probability Plot (Interactive Plotly) main_fig = go.Figure() main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue'))) main_fig.update_layout( title="Log Probabilities of Generated Tokens (Chunk %d)" % (chunk + 1), xaxis_title="Token Position (within chunk)", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select' ) main_fig.update_traces( customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], hovertemplate='%{customdata}' ) # 2. Probability Drop Analysis (Interactive Plotly) if len(paginated_logprobs) < 2: drops_fig = create_empty_figure("Significant Probability Drops (Chunk %d)" % (chunk + 1)) else: drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)] drops_fig = go.Figure() drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red')) drops_fig.update_layout( title="Significant Probability Drops (Chunk %d)" % (chunk + 1), xaxis_title="Token Position (within chunk)", yaxis_title="Log Probability Drop", hovermode="closest", clickmode='event+select' ) drops_fig.update_traces( customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)], hovertemplate='%{customdata}' ) # Create DataFrame for the table with dynamic top_logprobs table_data = [] max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0 for i, entry in enumerate(content[start_idx:end_idx]): if not isinstance(entry, dict): continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000 and "top_logprobs" in entry: # Include all entries with default 0.0 token = get_token(entry) top_logprobs = entry.get("top_logprobs", {}) if top_logprobs is None: logger.debug("top_logprobs is None for token: %s, using empty dict", token) top_logprobs = {} # Default to empty dict for None # Ensure all values in top_logprobs are floats finite_top_probs = [] for key, value in top_logprobs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) # Sort by log probability (descending) sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) row = [token, f"{logprob:.4f}"] for alt_token, alt_logprob in sorted_probs[:max_alternatives]: # Use max number of alternatives row.append(f"{alt_token}: {alt_logprob:.4f}") # Pad with empty strings if fewer alternatives than max while len(row) < 2 + max_alternatives: row.append("") table_data.append(row) df = ( pd.DataFrame( table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)], ) if table_data else None ) # Generate colored text (for the current chunk) if paginated_logprobs: min_logprob = min(paginated_logprobs) max_logprob = max(paginated_logprobs) if max_logprob == min_logprob: normalized_probs = [0.5] * len(paginated_logprobs) else: normalized_probs = [ (lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs ] colored_text = "" for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)): r = int(255 * (1 - norm_prob)) # Red for low confidence g = int(255 * norm_prob) # Green for high confidence b = 0 color = f"rgb({r}, {g}, {b})" colored_text += f'{token}' if i < len(paginated_tokens) - 1: colored_text += " " colored_text_html = f"

{colored_text}

" else: colored_text_html = "No tokens to display in this chunk." # Top Token Log Probabilities (Interactive Plotly, dynamic length, for the current chunk) alt_viz_fig = create_empty_figure("Top Token Log Probabilities (Chunk %d)" % (chunk + 1)) if not paginated_logprobs or not paginated_alternatives else go.Figure() if paginated_logprobs and paginated_alternatives: for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)): for j, (alt_tok, prob) in enumerate(probs): alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)])) alt_viz_fig.update_layout( title="Top Token Log Probabilities (Chunk %d)" % (chunk + 1), xaxis_title="Token (Position)", yaxis_title="Log Probability", barmode='stack', hovermode="closest", clickmode='event+select' ) alt_viz_fig.update_traces( customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts], hovertemplate='%{customdata}' ) return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig, total_chunks, chunk) except Exception as e: logger.error("Visualization failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input) return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No finite log probabilities to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) # Analysis functions for detecting correct vs. incorrect traces def analyze_confidence_signature(logprobs, tokens): if not logprobs or not tokens: return "No data for confidence signature analysis.", None # Track moving average of top token probability top_probs = [lps[0][1] if lps else -float('inf') for lps in logprobs] # Extract top probability, handle empty moving_avg = np.convolve( top_probs, np.ones(20) / 20, # 20-token window mode='valid' ) # Detect significant drops (potential error points) drops = np.where(np.diff(moving_avg) < -0.15)[0] if not drops.size: return "No significant confidence drops detected.", None drop_positions = [(i, tokens[i + 19] if i + 19 < len(tokens) else "End of trace") for i in drops] # Adjust for convolution window return "Significant confidence drops detected at positions:", drop_positions def detect_interpretation_pivots(logprobs, tokens): if not logprobs or not tokens: return "No data for interpretation pivot detection.", None pivots = [] reconsideration_tokens = ["wait", "but", "actually", "however", "hmm"] for i, (token, lps) in enumerate(zip(tokens, logprobs)): # Check if reconsideration tokens have unusually high probability for rt in reconsideration_tokens: for t, p in lps: if t.lower() == rt and p > -2.5: # High probability # Look back to find what's being reconsidered context = tokens[max(0, i-50):i] pivots.append((i, rt, context)) if not pivots: return "No interpretation pivots detected.", None return "Interpretation pivots detected:", pivots def calculate_decision_entropy(logprobs): if not logprobs: return "No data for entropy spike detection.", None # Calculate entropy at each token position entropies = [] for lps in logprobs: if not lps: entropies.append(0.0) continue # Calculate entropy: -sum(p * log(p)) for each probability probs = [math.exp(p) for _, p in lps] # Convert log probs to probabilities if not probs or sum(probs) == 0: entropies.append(0.0) continue entropy = -sum(p * math.log(p) for p in probs if p > 0) entropies.append(entropy) # Detect significant entropy spikes baseline = np.percentile(entropies, 75) if entropies else 0.0 spikes = [i for i, e in enumerate(entropies) if e > baseline * 1.5 if baseline > 0] if not spikes: return "No entropy spikes detected at decision points.", None return "Entropy spikes detected at positions:", spikes def analyze_conclusion_competition(logprobs, tokens): if not logprobs or not tokens: return "No data for conclusion competition analysis.", None # Find tokens related to conclusion conclusion_indices = [i for i, t in enumerate(tokens) if any(marker in t.lower() for marker in ["therefore", "thus", "boxed", "answer"])] if not conclusion_indices: return "No conclusion markers found in trace.", None # Analyze probability gap between top and second choices near conclusion gaps = [] conclusion_idx = conclusion_indices[-1] end_range = min(conclusion_idx + 50, len(logprobs)) for idx in range(conclusion_idx, end_range): if idx < len(logprobs) and len(logprobs[idx]) >= 2: top_prob = logprobs[idx][0][1] if logprobs[idx] else -float('inf') second_prob = logprobs[idx][1][1] if len(logprobs[idx]) > 1 else -float('inf') gap = top_prob - second_prob if top_prob != -float('inf') and second_prob != -float('inf') else 0.0 gaps.append(gap) if not gaps: return "No conclusion competition data available.", None mean_gap = np.mean(gaps) return f"Mean probability gap at conclusion: {mean_gap:.4f} (higher indicates more confident conclusion)", None def analyze_verification_signals(logprobs, tokens): if not logprobs or not tokens: return "No data for verification signal analysis.", None verification_terms = ["verify", "check", "confirm", "ensure", "double"] verification_probs = [] for lps in logprobs: # Look for verification terms in top-k tokens max_v_prob = -float('inf') for token, prob in lps: if any(v_term in token.lower() for v_term in verification_terms): max_v_prob = max(max_v_prob, prob) if max_v_prob > -float('inf'): verification_probs.append(max_v_prob) if not verification_probs: return "No verification signals detected.", None count, mean_prob = len(verification_probs), np.mean(verification_probs) return f"Verification signals found: {count} instances, mean probability: {mean_prob:.4f}", None def detect_semantic_inversions(logprobs, tokens): if not logprobs or not tokens: return "No data for semantic inversion detection.", None inversion_pairs = [ ("more", "less"), ("larger", "smaller"), ("winning", "losing"), ("increase", "decrease"), ("greater", "lesser"), ("positive", "negative") ] inversions = [] for i, (token, lps) in enumerate(zip(tokens, logprobs)): for pos, neg in inversion_pairs: if token.lower() == pos: # Check if negative term has high probability for t, p in lps: if t.lower() == neg and p > -3.0: # High competitor inversions.append((i, pos, neg, p)) elif token.lower() == neg: # Check if positive term has high probability for t, p in lps: if t.lower() == pos and p > -3.0: # High competitor inversions.append((i, neg, pos, p)) if not inversions: return "No semantic inversions detected.", None return "Semantic inversions detected:", inversions # Function to perform full trace analysis def analyze_full_trace(json_input): try: data = parse_input(json_input) content = data.get("content", []) if isinstance(data, dict) else data if not isinstance(content, list): raise ValueError("Content must be a list of entries") tokens = [] logprobs = [] for entry in content: if not isinstance(entry, dict): logger.warning("Skipping non-dictionary entry: %s", entry) continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000: # Include all entries with default 0.0 tokens.append(get_token(entry)) top_probs = entry.get("top_logprobs", {}) if top_probs is None: top_probs = {} finite_top_probs = [] for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) logprobs.append(finite_top_probs) if not logprobs or not tokens: return "No valid data for trace analysis.", None, None, None, None, None # Perform all analyses confidence_result, confidence_data = analyze_confidence_signature(logprobs, tokens) pivot_result, pivot_data = detect_interpretation_pivots(logprobs, tokens) entropy_result, entropy_data = calculate_decision_entropy(logprobs) conclusion_result, conclusion_data = analyze_conclusion_competition(logprobs, tokens) verification_result, verification_data = analyze_verification_signals(logprobs, tokens) inversion_result, inversion_data = detect_semantic_inversions(logprobs, tokens) # Format results for display analysis_html = f"""

Trace Analysis Results

""" return analysis_html, None, None, None, None, None # Gradio interface with two tabs: Trace Analysis and Visualization with gr.Blocks(title="Log Probability Visualizer") as app: gr.Markdown("# Log Probability Visualizer") gr.Markdown( "Paste your JSON log prob data below to analyze reasoning traces and visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields. Next chunk is precomputed proactively." ) with gr.Tabs(): with gr.Tab("Trace Analysis"): with gr.Row(): json_input_analysis = gr.Textbox( label="JSON Input for Trace Analysis", lines=10, placeholder="Paste your JSON (e.g., {\"content\": [{\"bytes\": [44], \"logprob\": 0.0, \"token\": \",\", \"top_logprobs\": {\" so\": -13.8046875, \".\": -13.8046875, \",\": -13.640625}}]}).", ) with gr.Row(): analysis_output = gr.HTML(label="Trace Analysis Results") btn_analyze = gr.Button("Analyze Trace") btn_analyze.click( fn=analyze_full_trace, inputs=[json_input_analysis], outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()], ) with gr.Tab("Visualization"): with gr.Row(): json_input_viz = gr.Textbox( label="JSON Input for Visualization", lines=10, placeholder="Paste your JSON (e.g., {\"content\": [{\"bytes\": [44], \"logprob\": 0.0, \"token\": \",\", \"top_logprobs\": {\" so\": -13.8046875, \".\": -13.8046875, \",\": -13.640625}}]}).", ) chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0) with gr.Row(): plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)") drops_output = gr.Plot(label="Probability Drops (Click for Details)") with gr.Row(): table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)") with gr.Row(): text_output = gr.HTML(label="Colored Text (Confidence Visualization)") with gr.Row(): prev_btn = gr.Button("Previous Chunk") next_btn = gr.Button("Next Chunk") total_chunks_output = gr.Number(label="Total Chunks", interactive=False) # Precomputed next chunk state (hidden) precomputed_next = gr.State(value=None) btn_viz = gr.Button("Visualize") btn_viz.click( fn=visualize_logprobs, inputs=[json_input_viz, chunk], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], ) # Precompute next chunk proactively when on current chunk async def precompute_next_chunk(json_input, current_chunk, precomputed_next): if precomputed_next is not None: return precomputed_next # Use cached precomputed chunk if available next_tokens, next_logprobs, next_alternatives = await precompute_chunk(json_input, 100, current_chunk) if next_tokens is None or next_logprobs is None or next_alternatives is None: return None return (next_tokens, next_logprobs, next_alternatives) # Update chunk on button clicks def update_chunk(json_input, current_chunk, action, precomputed_next=None): total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks if action == "prev" and current_chunk > 0: current_chunk -= 1 elif action == "next" and current_chunk < total_chunks - 1: current_chunk += 1 # If precomputed next chunk exists, use it; otherwise, compute it if precomputed_next: next_tokens, next_logprobs, next_alternatives = precomputed_next if next_tokens and next_logprobs and next_alternatives: logger.debug("Using precomputed next chunk for chunk %d", current_chunk) return visualize_logprobs(json_input, current_chunk) return visualize_logprobs(json_input, current_chunk) prev_btn.click( fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], ) next_btn.click( fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], ) # Trigger precomputation when chunk changes (via button clicks or initial load) def trigger_precomputation(json_input, current_chunk): asyncio.create_task(precompute_next_chunk(json_input, current_chunk, None)) return gr.update(value=current_chunk) # Use a dummy event to trigger precomputation on chunk change (simplified for Gradio) chunk.change( fn=trigger_precomputation, inputs=[json_input_viz, chunk], outputs=[chunk], ) app.launch()