import gradio as gr import json import matplotlib.pyplot as plt import pandas as pd import io import base64 import math import logging import numpy as np import plotly.graph_objects as go # Set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Function to safely parse JSON input def parse_input(json_input): logger.debug("Attempting to parse input: %s", json_input) try: data = json.loads(json_input) logger.debug("Successfully parsed as JSON") return data except json.JSONDecodeError as e: logger.error("JSON parsing failed: %s (Input: %s)", str(e), json_input[:100] + "..." if len(json_input) > 100 else json_input) raise ValueError(f"Malformed JSON: {str(e)}. Use double quotes for property names (e.g., \"content\") and ensure valid JSON format.") # Function to ensure a value is a float def ensure_float(value): if value is None: logger.debug("Replacing None logprob with 0.0") return 0.0 # Default to 0.0 for None if isinstance(value, str): try: return float(value) except ValueError: logger.error("Failed to convert string '%s' to float", value) return 0.0 # Default to 0.0 for invalid strings if isinstance(value, (int, float)): return float(value) return 0.0 # Default for any other type # Function to get or generate a token value (default to "Unknown" if missing) def get_token(entry): token = entry.get("token", "Unknown") if token == "Unknown": logger.warning("Missing 'token' key for entry: %s, using 'Unknown'", entry) return token # Function to create an empty Plotly figure def create_empty_figure(title): return go.Figure().update_layout(title=title, xaxis_title="", yaxis_title="", showlegend=False) # Precompute the next chunk (synchronous for Hugging Face Spaces) def precompute_chunk(json_input, chunk_size, current_chunk): try: data = parse_input(json_input) content = data.get("content", []) if isinstance(data, dict) else data if not isinstance(content, list): raise ValueError("Content must be a list of entries") tokens = [] logprobs = [] top_alternatives = [] for entry in content: if not isinstance(entry, dict): logger.warning("Skipping non-dictionary entry: %s", entry) continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000: # Include all entries with default 0.0 tokens.append(get_token(entry)) logprobs.append(logprob) top_probs = entry.get("top_logprobs", {}) or {} finite_top_probs = [] for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) top_alternatives.append(sorted_probs) if not tokens or not logprobs: return None, None, None next_chunk = current_chunk + 1 start_idx = next_chunk * chunk_size end_idx = min((next_chunk + 1) * chunk_size, len(tokens)) if start_idx >= len(tokens): return None, None, None return tokens[start_idx:end_idx], logprobs[start_idx:end_idx], top_alternatives[start_idx:end_idx] except Exception as e: logger.error("Precomputation failed for chunk %d: %s", current_chunk + 1, str(e)) return None, None, None # Function to process and visualize a chunk of log probs with dynamic top_logprobs def visualize_logprobs(json_input, chunk=0, chunk_size=100): try: data = parse_input(json_input) content = data.get("content", []) if isinstance(data, dict) else data if not isinstance(content, list): raise ValueError("Content must be a list of entries") tokens = [] logprobs = [] top_alternatives = [] # List to store all top_logprobs (dynamic length) for entry in content: if not isinstance(entry, dict): logger.warning("Skipping non-dictionary entry: %s", entry) continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000: # Include all entries with default 0.0 tokens.append(get_token(entry)) logprobs.append(logprob) top_probs = entry.get("top_logprobs", {}) or {} finite_top_probs = [] for key, value in top_probs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) top_alternatives.append(sorted_probs) if not logprobs or not tokens: return (create_empty_figure("Log Probabilities of Generated Tokens"), None, "No tokens to display.", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) total_chunks = max(1, (len(logprobs) + chunk_size - 1) // chunk_size) start_idx = chunk * chunk_size end_idx = min((chunk + 1) * chunk_size, len(logprobs)) paginated_tokens = tokens[start_idx:end_idx] paginated_logprobs = logprobs[start_idx:end_idx] paginated_alternatives = top_alternatives[start_idx:end_idx] if top_alternatives else [] # Main Log Probability Plot (Interactive Plotly) main_fig = go.Figure() main_fig.add_trace(go.Scatter(x=list(range(len(paginated_logprobs))), y=paginated_logprobs, mode='markers+lines', name='Log Prob', marker=dict(color='blue'))) main_fig.update_layout( title=f"Log Probabilities of Generated Tokens (Chunk {chunk + 1})", xaxis_title="Token Position (within chunk)", yaxis_title="Log Probability", hovermode="closest", clickmode='event+select' ) main_fig.update_traces( customdata=[f"Token: {tok}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, prob) in enumerate(zip(paginated_tokens, paginated_logprobs))], hovertemplate='%{customdata}' ) # Probability Drop Analysis (Interactive Plotly) if len(paginated_logprobs) < 2: drops_fig = create_empty_figure(f"Significant Probability Drops (Chunk {chunk + 1})") else: drops = [paginated_logprobs[i+1] - paginated_logprobs[i] for i in range(len(paginated_logprobs)-1)] drops_fig = go.Figure() drops_fig.add_trace(go.Bar(x=list(range(len(drops))), y=drops, name='Drop', marker_color='red')) drops_fig.update_layout( title=f"Significant Probability Drops (Chunk {chunk + 1})", xaxis_title="Token Position (within chunk)", yaxis_title="Log Probability Drop", hovermode="closest", clickmode='event+select' ) drops_fig.update_traces( customdata=[f"Drop: {drop:.4f}, From: {paginated_tokens[i]} to {paginated_tokens[i+1]}, Position: {i+start_idx}" for i, drop in enumerate(drops)], hovertemplate='%{customdata}' ) # Create DataFrame for the table with dynamic top_logprobs table_data = [] max_alternatives = max(len(alts) for alts in paginated_alternatives) if paginated_alternatives else 0 for i, entry in enumerate(content[start_idx:end_idx]): if not isinstance(entry, dict): continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000 and "top_logprobs" in entry: token = get_token(entry) top_logprobs = entry.get("top_logprobs", {}) or {} finite_top_probs = [] for key, value in top_logprobs.items(): float_value = ensure_float(value) if float_value is not None and math.isfinite(float_value): finite_top_probs.append((key, float_value)) sorted_probs = sorted(finite_top_probs, key=lambda x: x[1], reverse=True) row = [token, f"{logprob:.4f}"] for alt_token, alt_logprob in sorted_probs[:max_alternatives]: row.append(f"{alt_token}: {alt_logprob:.4f}") while len(row) < 2 + max_alternatives: row.append("") table_data.append(row) df = pd.DataFrame(table_data, columns=["Token", "Log Prob"] + [f"Alt {i+1}" for i in range(max_alternatives)]) if table_data else None # Generate colored text (for the current chunk) if paginated_logprobs: min_logprob = min(paginated_logprobs) max_logprob = max(paginated_logprobs) normalized_probs = [0.5] * len(paginated_logprobs) if max_logprob == min_logprob else \ [(lp - min_logprob) / (max_logprob - min_logprob) for lp in paginated_logprobs] colored_text = "" for i, (token, norm_prob) in enumerate(zip(paginated_tokens, normalized_probs)): r = int(255 * (1 - norm_prob)) # Red for low confidence g = int(255 * norm_prob) # Green for high confidence b = 0 color = f"rgb({r}, {g}, {b})" colored_text += f'{token}' if i < len(paginated_tokens) - 1: colored_text += " " colored_text_html = f"

{colored_text}

" else: colored_text_html = "No tokens to display in this chunk." # Top Token Log Probabilities (Interactive Plotly, dynamic length, for the current chunk) alt_viz_fig = create_empty_figure(f"Top Token Log Probabilities (Chunk {chunk + 1})") if not paginated_alternatives else go.Figure() if paginated_alternatives: for i, (token, probs) in enumerate(zip(paginated_tokens, paginated_alternatives)): for j, (alt_tok, prob) in enumerate(probs): alt_viz_fig.add_trace(go.Bar(x=[f"{token} (Pos {i+start_idx})"], y=[prob], name=f"{alt_tok}", marker_color=['blue', 'green', 'red', 'purple', 'orange'][:len(probs)])) alt_viz_fig.update_layout( title=f"Top Token Log Probabilities (Chunk {chunk + 1})", xaxis_title="Token (Position)", yaxis_title="Log Probability", barmode='stack', hovermode="closest", clickmode='event+select' ) alt_viz_fig.update_traces( customdata=[f"Token: {tok}, Alt: {alt}, Log Prob: {prob:.4f}, Position: {i+start_idx}" for i, (tok, alts) in enumerate(zip(paginated_tokens, paginated_alternatives)) for alt, prob in alts], hovertemplate='%{customdata}' ) return (main_fig, df, colored_text_html, alt_viz_fig, drops_fig, total_chunks, chunk) except Exception as e: logger.error("Visualization failed: %s", str(e)) return (create_empty_figure("Log Probabilities of Generated Tokens"), None, f"Error: {e}", create_empty_figure("Top Token Log Probabilities"), create_empty_figure("Significant Probability Drops"), 1, 0) # Analysis functions for detecting correct vs. incorrect traces def analyze_confidence_signature(logprobs, tokens): if not logprobs or not tokens: return "No data for confidence signature analysis.", None # Extract top probabilities top_probs = [lps[0][1] if lps and lps[0][1] is not None else -float('inf') for lps in logprobs] if not any(p != -float('inf') for p in top_probs): return "No valid log probabilities for confidence analysis.", None # Use a larger window for smoother trends window_size = 30 # Increased from 20 moving_avg = np.convolve(top_probs, np.ones(window_size) / window_size, mode='valid') # Calculate drop magnitudes drops = np.diff(moving_avg) # Use adaptive thresholding - only flag drops in the bottom 5% of all changes drop_threshold = np.percentile(drops, 5) # More selective significant_drops = np.where(drops < drop_threshold)[0] # Cluster nearby drops (within 10 tokens) to avoid reporting multiple points in the same reasoning shift if len(significant_drops) > 0: clustered_drops = [significant_drops[0]] for drop in significant_drops[1:]: if drop - clustered_drops[-1] > 10: # At least 10 tokens apart clustered_drops.append(drop) else: clustered_drops = [] # Look for context markers near drops filtered_drops = [] reasoning_markers = ["therefore", "thus", "so", "hence", "wait", "but", "however", "actually"] for drop in clustered_drops: # Adjust index for convolution window token_idx = drop + window_size - 1 # Check surrounding context (10 tokens before and after) start_idx = max(0, token_idx - 10) end_idx = min(len(tokens), token_idx + 10) context = " ".join(tokens[start_idx:end_idx]) # Only keep drops near reasoning transition markers if any(marker in context.lower() for marker in reasoning_markers): drop_magnitude = drops[drop] filtered_drops.append((token_idx, drop_magnitude, tokens[token_idx] if token_idx < len(tokens) else "End of trace")) # Sort by drop magnitude (largest drops first) filtered_drops.sort(key=lambda x: x[1]) if not filtered_drops: return "No significant confidence shifts at reasoning transitions detected.", None # Return at most 3 most significant drops as the data return "Significant confidence shifts detected at reasoning transitions:", filtered_drops[:3] def detect_interpretation_pivots(logprobs, tokens): if not logprobs or not tokens: return "No data for interpretation pivot detection.", None pivots = [] reconsideration_tokens = ["wait", "but", "actually", "however", "hmm"] for i, (token, lps) in enumerate(zip(tokens, logprobs)): if not lps: continue for rt in reconsideration_tokens: for t, p in lps: if t.lower() == rt and p > -2.5: # High probability context = tokens[max(0, i-50):i] pivots.append((i, rt, context)) if not pivots: return "No interpretation pivots detected.", None return "Interpretation pivots detected:", pivots def calculate_decision_entropy(logprobs, tokens=None): if not logprobs: return "No data for entropy spike detection.", None # Calculate entropy at each position entropies = [] for lps in logprobs: if not lps or len(lps) < 2: # Need at least two tokens for meaningful entropy entropies.append(0.0) continue # Only use top-5 tokens for entropy calculation to reduce noise top_k = min(5, len(lps)) probs = [math.exp(p) for _, p in lps[:top_k] if p is not None] # Normalize probabilities to sum to 1 if not probs or sum(probs) == 0: entropies.append(0.0) continue prob_sum = sum(probs) normalized_probs = [p/prob_sum for p in probs] entropy = -sum(p * math.log(p) for p in normalized_probs if p > 0) entropies.append(entropy) # Smooth entropy values with moving average window_size = 15 if len(entropies) >= window_size: smoothed_entropies = np.convolve(entropies, np.ones(window_size)/window_size, mode='valid') else: smoothed_entropies = entropies # More selective threshold - 90th percentile and 2x multiplier baseline = np.percentile(smoothed_entropies, 90) if smoothed_entropies.size > 0 else 0.0 # Find significant spikes (much more selective) spikes = [] if baseline > 0: raw_spikes = np.where(smoothed_entropies > baseline * 2.0)[0] # Cluster nearby spikes (within 20 tokens) if raw_spikes.size > 0: spikes = [raw_spikes[0]] for spike in raw_spikes[1:]: if spike - spikes[-1] > 20: spikes.append(spike) # If we have token information, check context around spikes if tokens and spikes: context_spikes = [] decision_markers = ["therefore", "thus", "so", "hence", "because", "wait", "but", "however", "actually", "instead"] for spike in spikes: # Adjust index for convolution window if using smoothed values spike_idx = spike + window_size//2 if len(entropies) >= window_size else spike if spike_idx >= len(tokens): continue # Check surrounding context (15 tokens before and after) start_idx = max(0, spike_idx - 15) end_idx = min(len(tokens), spike_idx + 15) if end_idx <= start_idx: continue context = " ".join(tokens[start_idx:end_idx]) # Only keep spikes near reasoning transitions if any(marker in context.lower() for marker in decision_markers): entropy_value = smoothed_entropies[spike - window_size//2] if len(entropies) >= window_size else entropies[spike] context_spikes.append((spike_idx, entropy_value, tokens[spike_idx] if spike_idx < len(tokens) else "End")) spikes = context_spikes # Return at most 3 most significant spikes if not spikes: return "No significant entropy spikes detected at decision points.", None # Sort by entropy value (highest first) if we have context information if tokens and spikes: spikes.sort(key=lambda x: x[1], reverse=True) return "Significant entropy spikes detected at positions:", spikes[:3] return "Entropy spikes detected at positions:", spikes[:3] def analyze_conclusion_competition(logprobs, tokens): if not logprobs or not tokens: return "No data for conclusion competition analysis.", None conclusion_indices = [i for i, t in enumerate(tokens) if any(marker in t.lower() for marker in ["therefore", "thus", "boxed", "answer"])] if not conclusion_indices: return "No conclusion markers found in trace.", None gaps = [] conclusion_idx = conclusion_indices[-1] end_range = min(conclusion_idx + 50, len(logprobs)) for idx in range(conclusion_idx, end_range): if idx < len(logprobs) and len(logprobs[idx]) >= 2 and logprobs[idx][0][1] is not None and logprobs[idx][1][1] is not None: gap = logprobs[idx][0][1] - logprobs[idx][1][1] gaps.append(gap) if not gaps: return "No conclusion competition data available.", None mean_gap = np.mean(gaps) return f"Mean probability gap at conclusion: {mean_gap:.4f} (higher indicates more confident conclusion)", None def analyze_verification_signals(logprobs, tokens): if not logprobs or not tokens: return "No data for verification signal analysis.", None verification_terms = ["verify", "check", "confirm", "ensure", "double"] verification_probs = [] for lps in logprobs: if not lps: continue max_v_prob = -float('inf') for token, prob in lps: if any(v_term in token.lower() for v_term in verification_terms) and prob is not None: max_v_prob = max(max_v_prob, prob) if max_v_prob > -float('inf'): verification_probs.append(max_v_prob) if not verification_probs: return "No verification signals detected.", None count, mean_prob = len(verification_probs), np.mean(verification_probs) return f"Verification signals found: {count} instances, mean probability: {mean_prob:.4f}", None def detect_semantic_inversions(logprobs, tokens): if not logprobs or not tokens: return "No data for semantic inversion detection.", None inversion_pairs = [("more", "less"), ("larger", "smaller"), ("winning", "losing"), ("increase", "decrease"), ("greater", "lesser"), ("positive", "negative")] inversions = [] for i, (token, lps) in enumerate(zip(tokens, logprobs)): if not lps: continue for pos, neg in inversion_pairs: if token.lower() == pos: for t, p in lps: if t.lower() == neg and p > -3.0 and p is not None: inversions.append((i, pos, neg, p)) elif token.lower() == neg: for t, p in lps: if t.lower() == pos and p > -3.0 and p is not None: inversions.append((i, neg, pos, p)) if not inversions: return "No semantic inversions detected.", None return "Semantic inversions detected:", inversions # Function to perform full trace analysis (FIXED) def analyze_full_trace(json_input): try: data = parse_input(json_input) content = data.get("content", []) if isinstance(data, dict) else data if not isinstance(content, list): raise ValueError("Content must be a list of entries") tokens = [] logprobs = [] for entry in content: if not isinstance(entry, dict): logger.warning("Skipping non-dictionary entry: %s", entry) continue logprob = ensure_float(entry.get("logprob", None)) if logprob >= -100000: tokens.append(get_token(entry)) top_probs = entry.get("top_logprobs", {}) or {} finite_top_probs = [(key, ensure_float(value)) for key, value in top_probs.items() if ensure_float(value) is not None and math.isfinite(ensure_float(value))] logprobs.append(finite_top_probs) if not logprobs or not tokens: return "No valid data for trace analysis.", None, None, None, None, None confidence_result, confidence_data = analyze_confidence_signature(logprobs, tokens) pivot_result, pivot_data = detect_interpretation_pivots(logprobs, tokens) entropy_result, entropy_data = calculate_decision_entropy(logprobs, tokens) conclusion_result, conclusion_data = analyze_conclusion_competition(logprobs, tokens) verification_result, verification_data = analyze_verification_signals(logprobs, tokens) inversion_result, inversion_data = detect_semantic_inversions(logprobs, tokens) # Precompute the joined context strings for pivots to avoid backslashes in f-string expressions pivot_details = ', '.join(f"Position: {pos}, Reconsideration: {rt}, Context: {' '.join(context)}" for pos, rt, context in pivot_data) if pivot_data else "" # Updated HTML formatting without backslashes in f-string expressions analysis_html = f"""

Trace Analysis Results

""" return analysis_html, None, None, None, None, None except Exception as e: logger.error("Trace analysis failed: %s", str(e)) return f"Error: {e}", None, None, None, None, None # Gradio interface with two tabs try: with gr.Blocks(title="Log Probability Visualizer") as app: gr.Markdown("# Log Probability Visualizer") gr.Markdown("Paste your JSON log prob data below to analyze reasoning traces or visualize tokens in chunks of 100. Fixed filter ≥ -100000, dynamic number of top_logprobs, handles missing or null fields.") with gr.Tabs(): with gr.Tab("Trace Analysis"): with gr.Row(): json_input_analysis = gr.Textbox( label="JSON Input for Trace Analysis", lines=10, placeholder='{"content": [{"bytes": [44], "logprob": 0.0, "token": ",", "top_logprobs": {" so": -13.8046875, ".": -13.8046875, ",": -13.640625}}]}' ) with gr.Row(): analysis_output = gr.HTML(label="Trace Analysis Results") btn_analyze = gr.Button("Analyze Trace") btn_analyze.click( fn=analyze_full_trace, inputs=[json_input_analysis], outputs=[analysis_output, gr.State(), gr.State(), gr.State(), gr.State(), gr.State()], ) with gr.Tab("Visualization"): with gr.Row(): json_input_viz = gr.Textbox( label="JSON Input for Visualization", lines=10, placeholder='{"content": [{"bytes": [44], "logprob": 0.0, "token": ",", "top_logprobs": {" so": -13.8046875, ".": -13.8046875, ",": -13.640625}}]}' ) chunk = gr.Number(value=0, label="Current Chunk", precision=0, minimum=0) with gr.Row(): plot_output = gr.Plot(label="Log Probability Plot (Click for Tokens)") drops_output = gr.Plot(label="Probability Drops (Click for Details)") with gr.Row(): table_output = gr.Dataframe(label="Token Log Probabilities and Top Alternatives") alt_viz_output = gr.Plot(label="Top Token Log Probabilities (Click for Details)") with gr.Row(): text_output = gr.HTML(label="Colored Text (Confidence Visualization)") with gr.Row(): prev_btn = gr.Button("Previous Chunk") next_btn = gr.Button("Next Chunk") total_chunks_output = gr.Number(label="Total Chunks", interactive=False) # Precomputed next chunk state (hidden) precomputed_next = gr.State(value=None) btn_viz = gr.Button("Visualize") btn_viz.click( fn=visualize_logprobs, inputs=[json_input_viz, chunk], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], ) def precompute_next_chunk(json_input, current_chunk): return precompute_chunk(json_input, 100, current_chunk) def update_chunk(json_input, current_chunk, action, precomputed_next=None): total_chunks = visualize_logprobs(json_input, 0)[5] # Get total chunks if action == "prev" and current_chunk > 0: current_chunk -= 1 elif action == "next" and current_chunk < total_chunks - 1: current_chunk += 1 if precomputed_next and all(precomputed_next): logger.debug("Using precomputed next chunk for chunk %d", current_chunk) return visualize_logprobs(json_input, current_chunk) return visualize_logprobs(json_input, current_chunk) prev_btn.click( fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="prev"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], ) next_btn.click( fn=update_chunk, inputs=[json_input_viz, chunk, gr.State(value="next"), precomputed_next], outputs=[plot_output, table_output, text_output, alt_viz_output, drops_output, total_chunks_output, chunk], ) def trigger_precomputation(json_input, current_chunk): try: precomputed = precompute_next_chunk(json_input, current_chunk) precomputed_next.value = precomputed # Update state directly except Exception as e: logger.error("Precomputation trigger failed: %s", str(e)) return gr.update(value=current_chunk) chunk.change( fn=trigger_precomputation, inputs=[json_input_viz, chunk], outputs=[chunk], ) # Launch the Gradio application app.launch() except Exception as e: logger.error("Application startup failed: %s", str(e)) raise