Upload gradio_app.py
Browse files- gradio_app.py +519 -0
gradio_app.py
ADDED
@@ -0,0 +1,519 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import CLIPProcessor, CLIPModel
|
4 |
+
from datasets import load_dataset
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import os
|
9 |
+
import glob
|
10 |
+
from pathlib import Path
|
11 |
+
import numpy as np
|
12 |
+
import io
|
13 |
+
import base64
|
14 |
+
|
15 |
+
# Global variables for model and data
|
16 |
+
model = None
|
17 |
+
processor = None
|
18 |
+
device = None
|
19 |
+
demo_data = None
|
20 |
+
demo_text_emb = None
|
21 |
+
demo_image_emb = None
|
22 |
+
|
23 |
+
# Custom folder data
|
24 |
+
custom_images = []
|
25 |
+
custom_descriptions = []
|
26 |
+
custom_paths = []
|
27 |
+
custom_image_emb = None
|
28 |
+
current_data_source = "demo"
|
29 |
+
|
30 |
+
def load_model_and_demo_data():
|
31 |
+
"""Load CLIP model and demo dataset"""
|
32 |
+
global model, processor, device, demo_data, demo_text_emb, demo_image_emb
|
33 |
+
|
34 |
+
try:
|
35 |
+
# Load dataset
|
36 |
+
demo_data = load_dataset("jamescalam/image-text-demo", split="train")
|
37 |
+
|
38 |
+
# Load model
|
39 |
+
model_id = "openai/clip-vit-base-patch32"
|
40 |
+
processor = CLIPProcessor.from_pretrained(model_id)
|
41 |
+
model = CLIPModel.from_pretrained(model_id)
|
42 |
+
|
43 |
+
# Move to device
|
44 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
45 |
+
model.to(device)
|
46 |
+
|
47 |
+
# Pre-compute image embeddings
|
48 |
+
text = demo_data['text']
|
49 |
+
images = demo_data['image']
|
50 |
+
|
51 |
+
inputs = processor(
|
52 |
+
text=text,
|
53 |
+
images=images,
|
54 |
+
return_tensors="pt",
|
55 |
+
padding=True,
|
56 |
+
).to(device)
|
57 |
+
|
58 |
+
outputs = model(**inputs)
|
59 |
+
|
60 |
+
# Normalize embeddings
|
61 |
+
demo_text_emb = outputs.text_embeds
|
62 |
+
demo_text_emb = demo_text_emb / torch.norm(demo_text_emb, dim=1, keepdim=True)
|
63 |
+
|
64 |
+
demo_image_emb = outputs.image_embeds
|
65 |
+
demo_image_emb = demo_image_emb / torch.norm(demo_image_emb, dim=1, keepdim=True)
|
66 |
+
|
67 |
+
return f"β
Model loaded successfully on {device.upper()}. Demo dataset: {len(demo_data)} images."
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
return f"β Error loading model: {str(e)}"
|
71 |
+
|
72 |
+
def load_custom_folder(folder_path):
|
73 |
+
"""Load images from a custom folder"""
|
74 |
+
global custom_images, custom_descriptions, custom_paths, custom_image_emb, current_data_source
|
75 |
+
|
76 |
+
if not folder_path or not os.path.exists(folder_path):
|
77 |
+
return "β Invalid folder path"
|
78 |
+
|
79 |
+
try:
|
80 |
+
supported_formats = ['*.jpg', '*.jpeg', '*.png', '*.bmp', '*.gif', '*.tiff']
|
81 |
+
image_paths = []
|
82 |
+
|
83 |
+
# Get all image files from the folder
|
84 |
+
for format_type in supported_formats:
|
85 |
+
image_paths.extend(glob.glob(os.path.join(folder_path, format_type)))
|
86 |
+
image_paths.extend(glob.glob(os.path.join(folder_path, format_type.upper())))
|
87 |
+
|
88 |
+
# Also search in subdirectories
|
89 |
+
for format_type in supported_formats:
|
90 |
+
image_paths.extend(glob.glob(os.path.join(folder_path, '**', format_type), recursive=True))
|
91 |
+
image_paths.extend(glob.glob(os.path.join(folder_path, '**', format_type.upper()), recursive=True))
|
92 |
+
|
93 |
+
# Remove duplicates and sort
|
94 |
+
image_paths = sorted(list(set(image_paths)))
|
95 |
+
|
96 |
+
if not image_paths:
|
97 |
+
return "β No valid images found in the specified folder"
|
98 |
+
|
99 |
+
# Load images
|
100 |
+
custom_images.clear()
|
101 |
+
custom_descriptions.clear()
|
102 |
+
custom_paths.clear()
|
103 |
+
|
104 |
+
for img_path in image_paths[:100]: # Limit to 100 images for demo
|
105 |
+
try:
|
106 |
+
img = Image.open(img_path).convert('RGB')
|
107 |
+
custom_images.append(img)
|
108 |
+
filename = Path(img_path).stem
|
109 |
+
custom_descriptions.append(f"Image: {filename}")
|
110 |
+
custom_paths.append(img_path)
|
111 |
+
except Exception as e:
|
112 |
+
continue
|
113 |
+
|
114 |
+
if not custom_images:
|
115 |
+
return "β No valid images could be loaded"
|
116 |
+
|
117 |
+
# Compute embeddings
|
118 |
+
custom_image_emb = compute_custom_embeddings(custom_images, custom_descriptions)
|
119 |
+
current_data_source = "custom"
|
120 |
+
|
121 |
+
return f"β
Loaded {len(custom_images)} images from custom folder"
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
return f"β Error loading custom folder: {str(e)}"
|
125 |
+
|
126 |
+
def compute_custom_embeddings(images, descriptions):
|
127 |
+
"""Compute embeddings for custom images"""
|
128 |
+
try:
|
129 |
+
batch_size = 8
|
130 |
+
all_image_embeddings = []
|
131 |
+
|
132 |
+
for i in range(0, len(images), batch_size):
|
133 |
+
batch_images = images[i:i+batch_size]
|
134 |
+
batch_texts = descriptions[i:i+batch_size]
|
135 |
+
|
136 |
+
inputs = processor(
|
137 |
+
text=batch_texts,
|
138 |
+
images=batch_images,
|
139 |
+
return_tensors="pt",
|
140 |
+
padding=True,
|
141 |
+
).to(device)
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
outputs = model(**inputs)
|
145 |
+
image_emb = outputs.image_embeds
|
146 |
+
image_emb = image_emb / torch.norm(image_emb, dim=1, keepdim=True)
|
147 |
+
all_image_embeddings.append(image_emb.cpu())
|
148 |
+
|
149 |
+
return torch.cat(all_image_embeddings, dim=0).to(device)
|
150 |
+
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Error computing embeddings: {str(e)}")
|
153 |
+
return None
|
154 |
+
|
155 |
+
def search_images_by_text(query_text, top_k=5, data_source="demo"):
|
156 |
+
"""Search images based on text query"""
|
157 |
+
if not query_text.strip():
|
158 |
+
return [], "Please enter a search query"
|
159 |
+
|
160 |
+
try:
|
161 |
+
# Choose data source
|
162 |
+
if data_source == "custom" and custom_image_emb is not None:
|
163 |
+
images = custom_images
|
164 |
+
descriptions = custom_descriptions
|
165 |
+
image_emb = custom_image_emb
|
166 |
+
else:
|
167 |
+
images = demo_data['image']
|
168 |
+
descriptions = demo_data['text']
|
169 |
+
image_emb = demo_image_emb
|
170 |
+
|
171 |
+
# Process the text query
|
172 |
+
inputs = processor(text=[query_text], return_tensors="pt", padding=True).to(device)
|
173 |
+
|
174 |
+
with torch.no_grad():
|
175 |
+
text_features = model.get_text_features(**inputs)
|
176 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
177 |
+
|
178 |
+
# Calculate similarity scores
|
179 |
+
similarity = torch.mm(text_features, image_emb.T)
|
180 |
+
|
181 |
+
# Get top-k matches
|
182 |
+
values, indices = similarity[0].topk(min(top_k, len(images)))
|
183 |
+
|
184 |
+
results = []
|
185 |
+
for idx, score in zip(indices, values):
|
186 |
+
results.append((images[idx], f"Score: {score.item():.3f}\n{descriptions[idx]}"))
|
187 |
+
|
188 |
+
status = f"Found {len(results)} matches for: '{query_text}'"
|
189 |
+
return results, status
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
return [], f"Error during search: {str(e)}"
|
193 |
+
|
194 |
+
def search_similar_images(query_image, top_k=5, data_source="demo"):
|
195 |
+
"""Search similar images based on query image"""
|
196 |
+
if query_image is None:
|
197 |
+
return [], "Please provide a query image"
|
198 |
+
|
199 |
+
try:
|
200 |
+
# Choose data source
|
201 |
+
if data_source == "custom" and custom_image_emb is not None:
|
202 |
+
images = custom_images
|
203 |
+
descriptions = custom_descriptions
|
204 |
+
image_emb = custom_image_emb
|
205 |
+
else:
|
206 |
+
images = demo_data['image']
|
207 |
+
descriptions = demo_data['text']
|
208 |
+
image_emb = demo_image_emb
|
209 |
+
|
210 |
+
# Process the query image
|
211 |
+
inputs = processor(images=query_image, return_tensors="pt", padding=True).to(device)
|
212 |
+
|
213 |
+
with torch.no_grad():
|
214 |
+
image_features = model.get_image_features(**inputs)
|
215 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
216 |
+
|
217 |
+
# Calculate similarity scores
|
218 |
+
similarity = torch.mm(image_features, image_emb.T)
|
219 |
+
|
220 |
+
# Get top-k matches
|
221 |
+
values, indices = similarity[0].topk(min(top_k, len(images)))
|
222 |
+
|
223 |
+
results = []
|
224 |
+
for idx, score in zip(indices, values):
|
225 |
+
results.append((images[idx], f"Score: {score.item():.3f}\n{descriptions[idx]}"))
|
226 |
+
|
227 |
+
status = f"Found {len(results)} similar images"
|
228 |
+
return results, status
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
return [], f"Error during search: {str(e)}"
|
232 |
+
|
233 |
+
def classify_image(image, labels_text):
|
234 |
+
"""Classify image with custom labels"""
|
235 |
+
if image is None:
|
236 |
+
return None, "Please provide an image"
|
237 |
+
|
238 |
+
if not labels_text.strip():
|
239 |
+
return None, "Please provide labels"
|
240 |
+
|
241 |
+
try:
|
242 |
+
labels = [label.strip() for label in labels_text.split('\n') if label.strip()]
|
243 |
+
|
244 |
+
if not labels:
|
245 |
+
return None, "Please provide valid labels"
|
246 |
+
|
247 |
+
# Prepare text prompts
|
248 |
+
text_prompts = [f"a photo of {label}" for label in labels]
|
249 |
+
|
250 |
+
inputs = processor(
|
251 |
+
text=text_prompts,
|
252 |
+
images=image,
|
253 |
+
return_tensors="pt",
|
254 |
+
padding=True,
|
255 |
+
).to(device)
|
256 |
+
|
257 |
+
with torch.no_grad():
|
258 |
+
outputs = model(**inputs)
|
259 |
+
logits_per_image = outputs.logits_per_image
|
260 |
+
probs = logits_per_image.softmax(dim=1)
|
261 |
+
|
262 |
+
# Create bar chart
|
263 |
+
probabilities = probs[0].cpu().numpy()
|
264 |
+
|
265 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
266 |
+
bars = ax.barh(labels, probabilities)
|
267 |
+
ax.set_xlabel('Probability')
|
268 |
+
ax.set_title('Zero-Shot Classification Results')
|
269 |
+
|
270 |
+
# Color bars based on probability
|
271 |
+
for i, bar in enumerate(bars):
|
272 |
+
bar.set_color(plt.cm.viridis(probabilities[i]))
|
273 |
+
|
274 |
+
plt.tight_layout()
|
275 |
+
|
276 |
+
# Create detailed results text
|
277 |
+
results_text = "Classification Results:\n\n"
|
278 |
+
sorted_results = sorted(zip(labels, probabilities), key=lambda x: x[1], reverse=True)
|
279 |
+
|
280 |
+
for label, prob in sorted_results:
|
281 |
+
results_text += f"{label}: {prob:.3f} ({prob*100:.1f}%)\n"
|
282 |
+
|
283 |
+
return fig, results_text
|
284 |
+
|
285 |
+
except Exception as e:
|
286 |
+
return None, f"Error during classification: {str(e)}"
|
287 |
+
|
288 |
+
def get_random_demo_images():
|
289 |
+
"""Get random images from current dataset"""
|
290 |
+
try:
|
291 |
+
if current_data_source == "custom" and custom_images:
|
292 |
+
images = custom_images
|
293 |
+
descriptions = custom_descriptions
|
294 |
+
else:
|
295 |
+
images = demo_data['image']
|
296 |
+
descriptions = demo_data['text']
|
297 |
+
|
298 |
+
if len(images) == 0:
|
299 |
+
return []
|
300 |
+
|
301 |
+
# Get random indices
|
302 |
+
indices = np.random.choice(len(images), min(6, len(images)), replace=False)
|
303 |
+
|
304 |
+
results = []
|
305 |
+
for idx in indices:
|
306 |
+
results.append((images[idx], f"Image {idx}: {descriptions[idx][:100]}..."))
|
307 |
+
|
308 |
+
return results
|
309 |
+
|
310 |
+
except Exception as e:
|
311 |
+
return []
|
312 |
+
|
313 |
+
def switch_data_source(choice):
|
314 |
+
"""Switch between demo and custom data source"""
|
315 |
+
global current_data_source
|
316 |
+
current_data_source = "demo" if choice == "Demo Dataset" else "custom"
|
317 |
+
|
318 |
+
if current_data_source == "custom" and not custom_images:
|
319 |
+
return "β οΈ Custom folder not loaded. Please load a custom folder first."
|
320 |
+
elif current_data_source == "custom":
|
321 |
+
return f"β
Switched to custom folder ({len(custom_images)} images)"
|
322 |
+
else:
|
323 |
+
return f"β
Switched to demo dataset ({len(demo_data)} images)"
|
324 |
+
|
325 |
+
# Initialize the model when the module loads
|
326 |
+
initialization_status = load_model_and_demo_data()
|
327 |
+
|
328 |
+
# Create Gradio interface
|
329 |
+
with gr.Blocks(title="AI Image Discovery Studio", theme=gr.themes.Soft()) as demo:
|
330 |
+
gr.Markdown("""
|
331 |
+
# πΌοΈ AI Image Discovery Studio
|
332 |
+
|
333 |
+
Search images using natural language or find visually similar content with CLIP embeddings!
|
334 |
+
""")
|
335 |
+
|
336 |
+
# Status display
|
337 |
+
with gr.Row():
|
338 |
+
status_display = gr.Textbox(
|
339 |
+
value=initialization_status,
|
340 |
+
label="System Status",
|
341 |
+
interactive=False
|
342 |
+
)
|
343 |
+
|
344 |
+
# Data source selection and custom folder loading
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column(scale=1):
|
347 |
+
data_source_radio = gr.Radio(
|
348 |
+
["Demo Dataset", "Custom Folder"],
|
349 |
+
value="Demo Dataset",
|
350 |
+
label="Data Source"
|
351 |
+
)
|
352 |
+
|
353 |
+
folder_path_input = gr.Textbox(
|
354 |
+
label="Custom Folder Path",
|
355 |
+
placeholder="e.g., /path/to/your/images",
|
356 |
+
visible=False
|
357 |
+
)
|
358 |
+
|
359 |
+
load_folder_btn = gr.Button("Load Custom Folder", visible=False)
|
360 |
+
folder_status = gr.Textbox(label="Folder Status", visible=False, interactive=False)
|
361 |
+
|
362 |
+
with gr.Column(scale=2):
|
363 |
+
source_status = gr.Textbox(
|
364 |
+
value=f"β
Using demo dataset ({len(demo_data)} images)",
|
365 |
+
label="Current Data Source",
|
366 |
+
interactive=False
|
367 |
+
)
|
368 |
+
|
369 |
+
# Show/hide custom folder controls based on selection
|
370 |
+
def toggle_folder_controls(choice):
|
371 |
+
visible = choice == "Custom Folder"
|
372 |
+
return (
|
373 |
+
gr.update(visible=visible), # folder_path_input
|
374 |
+
gr.update(visible=visible), # load_folder_btn
|
375 |
+
gr.update(visible=visible) # folder_status
|
376 |
+
)
|
377 |
+
|
378 |
+
data_source_radio.change(
|
379 |
+
toggle_folder_controls,
|
380 |
+
inputs=[data_source_radio],
|
381 |
+
outputs=[folder_path_input, load_folder_btn, folder_status]
|
382 |
+
)
|
383 |
+
|
384 |
+
# Update data source status
|
385 |
+
data_source_radio.change(
|
386 |
+
switch_data_source,
|
387 |
+
inputs=[data_source_radio],
|
388 |
+
outputs=[source_status]
|
389 |
+
)
|
390 |
+
|
391 |
+
# Load custom folder
|
392 |
+
load_folder_btn.click(
|
393 |
+
load_custom_folder,
|
394 |
+
inputs=[folder_path_input],
|
395 |
+
outputs=[folder_status]
|
396 |
+
)
|
397 |
+
|
398 |
+
# Main tabs
|
399 |
+
with gr.Tabs():
|
400 |
+
# Text to Image Search Tab
|
401 |
+
with gr.TabItem("π€ Text to Image Search"):
|
402 |
+
gr.Markdown("Enter a text description to find matching images")
|
403 |
+
|
404 |
+
with gr.Row():
|
405 |
+
with gr.Column():
|
406 |
+
text_query = gr.Textbox(
|
407 |
+
label="Search Query",
|
408 |
+
placeholder="e.g., 'Dog running on grass', 'Beautiful sunset over mountains'"
|
409 |
+
)
|
410 |
+
text_top_k = gr.Slider(1, 10, value=5, step=1, label="Number of Results")
|
411 |
+
text_search_btn = gr.Button("π Search Images", variant="primary")
|
412 |
+
|
413 |
+
with gr.Column():
|
414 |
+
text_search_status = gr.Textbox(label="Search Status", interactive=False)
|
415 |
+
|
416 |
+
text_results = gr.Gallery(
|
417 |
+
label="Search Results",
|
418 |
+
show_label=True,
|
419 |
+
elem_id="text_search_gallery",
|
420 |
+
columns=5,
|
421 |
+
rows=1,
|
422 |
+
height="auto"
|
423 |
+
)
|
424 |
+
|
425 |
+
# Connect text search
|
426 |
+
text_search_btn.click(
|
427 |
+
lambda query, top_k, source: search_images_by_text(
|
428 |
+
query, top_k, "custom" if source == "Custom Folder" else "demo"
|
429 |
+
),
|
430 |
+
inputs=[text_query, text_top_k, data_source_radio],
|
431 |
+
outputs=[text_results, text_search_status]
|
432 |
+
)
|
433 |
+
|
434 |
+
# Image to Image Search Tab
|
435 |
+
with gr.TabItem("πΌοΈ Image to Image Search"):
|
436 |
+
gr.Markdown("Upload an image to find visually similar ones")
|
437 |
+
|
438 |
+
with gr.Row():
|
439 |
+
with gr.Column():
|
440 |
+
query_image = gr.Image(label="Query Image", type="pil")
|
441 |
+
image_top_k = gr.Slider(1, 10, value=5, step=1, label="Number of Results")
|
442 |
+
image_search_btn = gr.Button("π Find Similar Images", variant="primary")
|
443 |
+
|
444 |
+
with gr.Column():
|
445 |
+
image_search_status = gr.Textbox(label="Search Status", interactive=False)
|
446 |
+
|
447 |
+
image_results = gr.Gallery(
|
448 |
+
label="Similar Images",
|
449 |
+
show_label=True,
|
450 |
+
elem_id="image_search_gallery",
|
451 |
+
columns=5,
|
452 |
+
rows=1,
|
453 |
+
height="auto"
|
454 |
+
)
|
455 |
+
|
456 |
+
# Connect image search
|
457 |
+
image_search_btn.click(
|
458 |
+
lambda img, top_k, source: search_similar_images(
|
459 |
+
img, top_k, "custom" if source == "Custom Folder" else "demo"
|
460 |
+
),
|
461 |
+
inputs=[query_image, image_top_k, data_source_radio],
|
462 |
+
outputs=[image_results, image_search_status]
|
463 |
+
)
|
464 |
+
|
465 |
+
# Zero-Shot Classification Tab
|
466 |
+
with gr.TabItem("π·οΈ Zero-Shot Classification"):
|
467 |
+
gr.Markdown("Classify an image with custom labels using CLIP")
|
468 |
+
|
469 |
+
with gr.Row():
|
470 |
+
with gr.Column():
|
471 |
+
classify_image_input = gr.Image(label="Image to Classify", type="pil")
|
472 |
+
labels_input = gr.Textbox(
|
473 |
+
label="Classification Labels (one per line)",
|
474 |
+
value="cat\ndog\ncar\nbird\nflower",
|
475 |
+
lines=5
|
476 |
+
)
|
477 |
+
classify_btn = gr.Button("π Classify Image", variant="primary")
|
478 |
+
|
479 |
+
with gr.Column():
|
480 |
+
classification_results = gr.Textbox(
|
481 |
+
label="Detailed Results",
|
482 |
+
lines=10,
|
483 |
+
interactive=False
|
484 |
+
)
|
485 |
+
|
486 |
+
classification_plot = gr.Plot(label="Classification Results")
|
487 |
+
|
488 |
+
# Connect classification
|
489 |
+
classify_btn.click(
|
490 |
+
classify_image,
|
491 |
+
inputs=[classify_image_input, labels_input],
|
492 |
+
outputs=[classification_plot, classification_results]
|
493 |
+
)
|
494 |
+
|
495 |
+
# Dataset Explorer Tab
|
496 |
+
with gr.TabItem("π Dataset Explorer"):
|
497 |
+
gr.Markdown("Browse through the dataset images")
|
498 |
+
|
499 |
+
with gr.Row():
|
500 |
+
random_sample_btn = gr.Button("π² Show Random Sample", variant="primary")
|
501 |
+
|
502 |
+
explorer_gallery = gr.Gallery(
|
503 |
+
label="Dataset Sample",
|
504 |
+
show_label=True,
|
505 |
+
elem_id="explorer_gallery",
|
506 |
+
columns=3,
|
507 |
+
rows=2,
|
508 |
+
height="auto"
|
509 |
+
)
|
510 |
+
|
511 |
+
# Connect random sampling
|
512 |
+
random_sample_btn.click(
|
513 |
+
get_random_demo_images,
|
514 |
+
outputs=[explorer_gallery]
|
515 |
+
)
|
516 |
+
|
517 |
+
# Launch the app
|
518 |
+
if __name__ == "__main__":
|
519 |
+
demo.launch()
|