Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline | |
title = "Code Explainer" | |
description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](https://huggingface.co/codeparrot/codeparrot-small-code-to-text),\ | |
a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text) a dataset of Python code followed by a docstring explaining it, the data was originally extracted from Jupyter notebooks." | |
EXAMPLE_1 = "def sort_function(arr):\n n = len(arr)\n \n # Traverse through all array elements\n for i in range(n):\n \n # Last i elements are already in place\n for j in range(0, n-i-1):\n \n # traverse the array from 0 to n-i-1\n # Swap if the element found is greater\n # than the next element\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]" | |
EXAMPLE_2 = "from sklearn import model_selection\nX_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.2)" | |
EXAMPLE_3 = "def load_text(file)\n with open(filename, 'r') as f:\n text = f.read()\n return text" | |
example = [ | |
[EXAMPLE_1, 32, 0.6, 42], | |
[EXAMPLE_2, 16, 0.6, 42], | |
[EXAMPLE_3, 11, 0.2, 42], | |
] | |
# change model to the finetuned one | |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-code-to-text") | |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-code-to-text") | |
def make_doctring(gen_prompt): | |
return gen_prompt + f"\n\n\"\"\"\nExplanation:" | |
def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42): | |
set_seed(seed) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
prompt = make_doctring(gen_prompt) | |
generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text'] | |
return generated_text | |
iface = gr.Interface( | |
fn=code_generation, | |
inputs=[ | |
gr.Code(lines=10, label="Python code"), | |
gr.inputs.Slider( | |
minimum=8, | |
maximum=256, | |
step=1, | |
default=8, | |
label="Number of tokens to generate", | |
), | |
gr.inputs.Slider( | |
minimum=0, | |
maximum=2.5, | |
step=0.1, | |
default=0.6, | |
label="Temperature", | |
), | |
gr.inputs.Slider( | |
minimum=0, | |
maximum=1000, | |
step=1, | |
default=42, | |
label="Random seed to use for the generation" | |
) | |
], | |
outputs=gr.Code(label="Predicted explanation", lines=10), | |
examples=example, | |
layout="horizontal", | |
theme="peach", | |
description=description, | |
title=title | |
) | |
iface.launch() | |