loubnabnl's picture
loubnabnl HF Staff
update app
101e4d0
raw
history blame
1.87 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from transformers import pipeline
title = "CodeParrot Generator"
description = "This is a subspace to make code generation with CodeParrot, it is used in a larger space for model comparison."
example = [
["def print_hello_world():", "Sample", 8, 42],
["\"""import GPT2 from transformers\""" ", "Sample", 16, 42],
["def get_file_size(filepath):", "Sample", 8, 42]]
tokenizer = AutoTokenizer.from_pretrained("lvwerra/codeparrot")
model = AutoModelForCausalLM.from_pretrained("lvwerra/codeparrot", low_cpu_mem_usage)
def code_generation(gen_prompt, strategy, max_tokens, seed=42):
set_seed(seed)
gen_kwargs = {}
gen_kwargs["do_sample"] = strategy == "Sample"
gen_kwargs["max_new_tokens"] = max_tokens
if gen_kwargs["do_sample"]:
gen_kwargs["temperature"] = 0.2
gen_kwargs["top_k"] = 0
gen_kwargs["top_p"] = 0.95
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text']
return generated_text
iface = gr.Interface(
fn=code_generation,
inputs=[
gr.Textbox(lines=10, label="Input code"),
gr.Dropdown(choices=["Greedy", "Sample"], value="Greedy"),
gr.inputs.Slider(
minimum=8,
maximum=256,
step=1,
default=8,
label="Number of tokens to generate",
),
gr.inputs.Slider(
minimum=0,
maximum=1000,
step=1,
default=42,
label="Random seed to use for the generation"
)
],
outputs=gr.Textbox(label="Predicted code", lines=10),
examples=example,
layout="horizontal",
theme="peach",
description=description,
title=title
)
iface.launch()