import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from transformers import pipeline title = "CodeParrot Generator 🦜" description = "This is a subspace to make code generation with [CodeParrot](https://huggingface.co/lvwerra/codeparrot), it is used in a larger [space](loubnabnl/Code-generation-models-v1) for model comparison." example = [ ["def print_hello_world():", "Sample", 8, 42], ["def get_file_size(filepath):", "Sample", 22, 42]] tokenizer = AutoTokenizer.from_pretrained("lvwerra/codeparrot") model = AutoModelForCausalLM.from_pretrained("lvwerra/codeparrot", low_cpu_mem_usage=True) def code_generation(gen_prompt, strategy, max_tokens, seed=42): set_seed(seed) gen_kwargs = {} gen_kwargs["do_sample"] = strategy == "Sample" gen_kwargs["max_new_tokens"] = max_tokens if gen_kwargs["do_sample"]: gen_kwargs["temperature"] = 0.2 gen_kwargs["top_k"] = 0 gen_kwargs["top_p"] = 0.95 pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text'] return generated_text iface = gr.Interface( fn=code_generation, inputs=[ gr.Textbox(lines=10, label="Input code"), gr.Dropdown(choices=["Greedy", "Sample"], value="Greedy"), gr.inputs.Slider( minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate", ), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Random seed to use for the generation" ) ], outputs=gr.Textbox(label="Predicted code", lines=10), examples=example, layout="horizontal", theme="peach", description=description, title=title ) iface.launch()