Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,24 @@ from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import random
|
|
|
6 |
|
7 |
-
model_id = "CompVis/stable-diffusion-v1-4"
|
8 |
-
lora_model_id = "codermert/mert_flux"
|
9 |
|
10 |
-
|
11 |
-
pipe
|
12 |
-
pipe = pipe.
|
13 |
-
pipe.
|
14 |
-
pipe.safety_checker = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
|
17 |
if seed == -1:
|
@@ -26,7 +35,6 @@ def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
|
|
26 |
num_inference_steps=steps,
|
27 |
guidance_scale=cfg_scale,
|
28 |
generator=generator,
|
29 |
-
cross_attention_kwargs={"scale": strength},
|
30 |
).images[0]
|
31 |
|
32 |
return image, seed
|
@@ -56,7 +64,6 @@ with gr.Blocks(theme='default', css=css) as app:
|
|
56 |
steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=50, step=1)
|
57 |
cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=15, step=0.5)
|
58 |
with gr.Column():
|
59 |
-
strength = gr.Slider(label="LoRA Strength", value=0.75, minimum=0, maximum=1, step=0.01)
|
60 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
61 |
|
62 |
with gr.Row():
|
@@ -70,7 +77,7 @@ with gr.Blocks(theme='default', css=css) as app:
|
|
70 |
|
71 |
generate_button.click(
|
72 |
generate_image,
|
73 |
-
inputs=[text_prompt, negative_prompt, steps, cfg_scale, seed, strength],
|
74 |
outputs=[image_output, seed_output]
|
75 |
)
|
76 |
|
|
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
import random
|
6 |
+
from peft import PeftModel, LoraConfig
|
7 |
|
8 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
9 |
+
lora_model_id = "codermert/mert_flux"
|
10 |
|
11 |
+
def load_model():
|
12 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
13 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
14 |
+
pipe = pipe.to("cpu")
|
15 |
+
pipe.safety_checker = None
|
16 |
+
|
17 |
+
# Load LoRA weights
|
18 |
+
config = LoraConfig.from_pretrained(lora_model_id)
|
19 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_model_id)
|
20 |
+
|
21 |
+
return pipe
|
22 |
+
|
23 |
+
pipe = load_model()
|
24 |
|
25 |
def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
|
26 |
if seed == -1:
|
|
|
35 |
num_inference_steps=steps,
|
36 |
guidance_scale=cfg_scale,
|
37 |
generator=generator,
|
|
|
38 |
).images[0]
|
39 |
|
40 |
return image, seed
|
|
|
64 |
steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=50, step=1)
|
65 |
cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=15, step=0.5)
|
66 |
with gr.Column():
|
|
|
67 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
68 |
|
69 |
with gr.Row():
|
|
|
77 |
|
78 |
generate_button.click(
|
79 |
generate_image,
|
80 |
+
inputs=[text_prompt, negative_prompt, steps, cfg_scale, seed, strength],
|
81 |
outputs=[image_output, seed_output]
|
82 |
)
|
83 |
|