codermert commited on
Commit
40df644
·
verified ·
1 Parent(s): 9ef5510

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -10
app.py CHANGED
@@ -3,15 +3,24 @@ from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
3
  import torch
4
  from PIL import Image
5
  import random
 
6
 
7
- model_id = "CompVis/stable-diffusion-v1-4" # Daha hafif bir model
8
- lora_model_id = "codermert/mert_flux" # Your LoRA model
9
 
10
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
11
- pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
12
- pipe = pipe.to("cpu") # CPU'ya taşıyoruz
13
- pipe.load_lora_weights(lora_model_id)
14
- pipe.safety_checker = None # Safety checker'ı devre dışı bırakıyoruz
 
 
 
 
 
 
 
 
15
 
16
  def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
17
  if seed == -1:
@@ -26,7 +35,6 @@ def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
26
  num_inference_steps=steps,
27
  guidance_scale=cfg_scale,
28
  generator=generator,
29
- cross_attention_kwargs={"scale": strength},
30
  ).images[0]
31
 
32
  return image, seed
@@ -56,7 +64,6 @@ with gr.Blocks(theme='default', css=css) as app:
56
  steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=50, step=1)
57
  cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=15, step=0.5)
58
  with gr.Column():
59
- strength = gr.Slider(label="LoRA Strength", value=0.75, minimum=0, maximum=1, step=0.01)
60
  seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
61
 
62
  with gr.Row():
@@ -70,7 +77,7 @@ with gr.Blocks(theme='default', css=css) as app:
70
 
71
  generate_button.click(
72
  generate_image,
73
- inputs=[text_prompt, negative_prompt, steps, cfg_scale, seed, strength],
74
  outputs=[image_output, seed_output]
75
  )
76
 
 
3
  import torch
4
  from PIL import Image
5
  import random
6
+ from peft import PeftModel, LoraConfig
7
 
8
+ model_id = "CompVis/stable-diffusion-v1-4"
9
+ lora_model_id = "codermert/mert_flux"
10
 
11
+ def load_model():
12
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
13
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
14
+ pipe = pipe.to("cpu")
15
+ pipe.safety_checker = None
16
+
17
+ # Load LoRA weights
18
+ config = LoraConfig.from_pretrained(lora_model_id)
19
+ pipe.unet = PeftModel.from_pretrained(pipe.unet, lora_model_id)
20
+
21
+ return pipe
22
+
23
+ pipe = load_model()
24
 
25
  def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
26
  if seed == -1:
 
35
  num_inference_steps=steps,
36
  guidance_scale=cfg_scale,
37
  generator=generator,
 
38
  ).images[0]
39
 
40
  return image, seed
 
64
  steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=50, step=1)
65
  cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=15, step=0.5)
66
  with gr.Column():
 
67
  seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
68
 
69
  with gr.Row():
 
77
 
78
  generate_button.click(
79
  generate_image,
80
+ inputs=[text_prompt, negative_prompt, steps, cfg_scale, seed, strength],
81
  outputs=[image_output, seed_output]
82
  )
83