Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
3 |
import random
|
4 |
-
import os
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
if seed == -1:
|
8 |
seed = random.randint(1, 1000000000)
|
9 |
|
10 |
-
|
11 |
-
"prompt": prompt,
|
12 |
-
"hf_lora": "codermert/mert_flux",
|
13 |
-
"output_format": "jpg",
|
14 |
-
"aspect_ratio": aspect_ratio,
|
15 |
-
"num_inference_steps": steps,
|
16 |
-
"guidance_scale": cfg_scale,
|
17 |
-
"lora_scale": strength,
|
18 |
-
"seed": seed,
|
19 |
-
"disable_safety_checker": True
|
20 |
-
}
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
css = """
|
31 |
#app-container {
|
32 |
-
max-width:
|
33 |
margin-left: auto;
|
34 |
margin-right: auto;
|
35 |
}
|
36 |
"""
|
37 |
|
38 |
examples = [
|
39 |
-
"A beautiful landscape with mountains and a lake",
|
40 |
-
"A futuristic cityscape at night",
|
41 |
-
"A portrait of a smiling person in a colorful outfit",
|
42 |
]
|
43 |
|
44 |
with gr.Blocks(theme='default', css=css) as app:
|
45 |
-
gr.HTML("<center><h1>Mert Flux
|
46 |
with gr.Column(elem_id="app-container"):
|
47 |
with gr.Row():
|
48 |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2)
|
|
|
49 |
with gr.Row():
|
50 |
-
with gr.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
strength = gr.Slider(label="Strength", value=0.
|
55 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
56 |
|
57 |
with gr.Row():
|
58 |
-
|
59 |
with gr.Row():
|
60 |
image_output = gr.Image(type="pil", label="Generated Image", show_download_button=True)
|
61 |
with gr.Row():
|
62 |
-
seed_output = gr.
|
63 |
|
64 |
-
gr.Examples(examples=examples, inputs=[text_prompt])
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
inputs=[text_prompt,
|
69 |
outputs=[image_output, seed_output]
|
70 |
)
|
71 |
|
72 |
-
app.launch(
|
|
|
1 |
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
import random
|
|
|
6 |
|
7 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
8 |
+
lora_model_id = "codermert/tugce2-lora" # Your LoRA model
|
9 |
+
|
10 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
11 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
12 |
+
pipe = pipe.to("cuda")
|
13 |
+
pipe.load_lora_weights(lora_model_id)
|
14 |
+
|
15 |
+
def generate_image(prompt, negative_prompt, steps, cfg_scale, seed, strength):
|
16 |
if seed == -1:
|
17 |
seed = random.randint(1, 1000000000)
|
18 |
|
19 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
image = pipe(
|
22 |
+
prompt=prompt,
|
23 |
+
negative_prompt=negative_prompt,
|
24 |
+
num_inference_steps=steps,
|
25 |
+
guidance_scale=cfg_scale,
|
26 |
+
generator=generator,
|
27 |
+
cross_attention_kwargs={"scale": strength},
|
28 |
+
).images[0]
|
29 |
+
|
30 |
+
return image, seed
|
31 |
|
32 |
css = """
|
33 |
#app-container {
|
34 |
+
max-width: 800px;
|
35 |
margin-left: auto;
|
36 |
margin-right: auto;
|
37 |
}
|
38 |
"""
|
39 |
|
40 |
examples = [
|
41 |
+
["A beautiful landscape with mountains and a lake", "ugly, deformed"],
|
42 |
+
["A futuristic cityscape at night", "daytime, rural"],
|
43 |
+
["A portrait of a smiling person in a colorful outfit", "monochrome, frowning"],
|
44 |
]
|
45 |
|
46 |
with gr.Blocks(theme='default', css=css) as app:
|
47 |
+
gr.HTML("<center><h1>Mert Flux LoRA Explorer</h1></center>")
|
48 |
with gr.Column(elem_id="app-container"):
|
49 |
with gr.Row():
|
50 |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2)
|
51 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What to avoid in the image", lines=2)
|
52 |
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
steps = gr.Slider(label="Sampling steps", value=30, minimum=10, maximum=100, step=1)
|
55 |
+
cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1, maximum=20, step=0.5)
|
56 |
+
with gr.Column():
|
57 |
+
strength = gr.Slider(label="LoRA Strength", value=0.75, minimum=0, maximum=1, step=0.01)
|
58 |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
59 |
|
60 |
with gr.Row():
|
61 |
+
generate_button = gr.Button("Generate", variant='primary')
|
62 |
with gr.Row():
|
63 |
image_output = gr.Image(type="pil", label="Generated Image", show_download_button=True)
|
64 |
with gr.Row():
|
65 |
+
seed_output = gr.Number(label="Seed Used")
|
66 |
|
67 |
+
gr.Examples(examples=examples, inputs=[text_prompt, negative_prompt])
|
68 |
|
69 |
+
generate_button.click(
|
70 |
+
generate_image,
|
71 |
+
inputs=[text_prompt, negative_prompt, steps, cfg_scale, seed, strength],
|
72 |
outputs=[image_output, seed_output]
|
73 |
)
|
74 |
|
75 |
+
app.launch()
|