Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def generate_image(prompt, num_inference_steps=50):
|
6 |
+
# Kendi modelinizi yükleyin
|
7 |
+
base_model = StableDiffusionPipeline.from_pretrained("codermert/mert_flux", torch_dtype=torch.float16)
|
8 |
+
base_model.to("cuda")
|
9 |
+
|
10 |
+
# Flux LoRA modelini yükleyin
|
11 |
+
lora_model_id = "lucataco/flux-dev-lora"
|
12 |
+
base_model.load_lora_weights(lora_model_id)
|
13 |
+
|
14 |
+
# Resmi oluşturun
|
15 |
+
image = base_model(prompt, num_inference_steps=num_inference_steps).images[0]
|
16 |
+
|
17 |
+
return image
|
18 |
+
|
19 |
+
iface = gr.Interface(
|
20 |
+
fn=generate_image,
|
21 |
+
inputs=[
|
22 |
+
gr.Textbox(label="Prompt"),
|
23 |
+
gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=50)
|
24 |
+
],
|
25 |
+
outputs=gr.Image(label="Generated Image"),
|
26 |
+
title="Mert Flux Image Generator",
|
27 |
+
description="Generate images using Mert Flux model and Flux LoRA"
|
28 |
+
)
|
29 |
+
|
30 |
+
iface.launch()
|